Skip to main content

Effects of Cardiotoxins on Membrane Ionic Channels

  • Chapter
Physiology and Pathophysiology of the Heart

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 34))

Abstract

Various ionic currents and conductance changes underlie the normal electrogenesis and automacity of the heart. A number of drugs and therapeutic agents act on the membranes of myocardial cells in a more or less specific manner on sodium, calcium, and potassium channels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lazdunski M, Renaud JF: The action of cardiotoxins on cardiac plasma membranes. Annu Rev Physiol 44: 463–473, 1982.

    Article  PubMed  CAS  Google Scholar 

  2. Howard BD, Gunderson CB Jr: Effects and mechanisms of polypeptide neurotoxins that act presynaptically. Annu Rev Pharmacol 20: 307–336, 1980.

    Article  CAS  Google Scholar 

  3. Narahashi T: Chemicals as tools in the study of excitable membranes. Physiol Rev 54: 813–889, 1974.

    Article  PubMed  CAS  Google Scholar 

  4. Schwartz JR, Ulbricht W, Wagner HH: The rate of action of tetrodotoxin on myelinated nerve fibers of Xenopus Laevis and Rana esculenta. J Physiol (Lond) 233: 167–194, 1973.

    Google Scholar 

  5. Cuervo LA, Adelman WJ: Equilibrium and kinetic properties of interaction between tetrodotoxin and the excitable membrane of the squid giant axon. J Gen Physiol 55: 309–355, 1970.

    Article  PubMed  CAS  Google Scholar 

  6. Ritchie JM, Rogart RB: The binding of saxitoxin and tetrodotoxin to excitable tissue. Rev Physiol Biochem Pharmacol 79: 1–50, 1977.

    Article  PubMed  CAS  Google Scholar 

  7. Chicheportiche R, Balerna M, Lombet A, Romey G, Lazdunski M: Synthesis of new, highly radioactive tetrodotoxin derivatives and their binding ‘ properties to the sodium channel. Eur J Biochem 104: 617–625, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Chicheportiche R, Balerna M, Lombet A, Romey G, Lazdunski M: Synthesis and mode of action on axonal membranes of photoactivable derivatives of tetrodotoxin. J Biol Chem 254: 1552–1557, 1979.

    PubMed  CAS  Google Scholar 

  9. Ritchie JM: The sodium channel as a drug receptor. In: Straub RW, Bolis L (eds) Cell membrane receptors for drugs and hormones: a multidisciplinary approach. New York: Raven, 1978, pp 227–242.

    Google Scholar 

  10. Baker PF, Rubinson KA: Chemical modification of crab nerves can make them insensitive to the local anaesthetics tetrodotoxin and saxitoxin. Nature 257: 412–414, 1975.

    Article  PubMed  CAS  Google Scholar 

  11. Reed JK, Raftery MA: Properties of the tetrodotoxin binding component in plasma membranes isolated from Electrophorus electricus. Biochemistry 15: 944–953, 1976.

    Article  PubMed  CAS  Google Scholar 

  12. Shrager P, Profera C: Inhibition of the receptor for tetrodotoxin in nerve membranes by reagents modifying carboxyl groups. Biochim Biophys Acta 318: 141–146, 1973.

    Article  PubMed  CAS  Google Scholar 

  13. Sigworth FJ, Spalding BC: Chemical modification reduces the conductance of sodium channels in nerve. Nature 283: 293–295, 1980.

    Article  PubMed  CAS  Google Scholar 

  14. Spalding BC: Properties of toxin-resistant sodium channels produced by chemical modification in frog skeletal muscle. J Physiol (Lond) 305: 485–500, 1980.

    CAS  Google Scholar 

  15. Moore HPH, Fritz LC, Raftery MA, Brockes JP: Isolation and characterization of a monoclonal antibody against the saxitoxin-binding component from the electric organ of the eel Electrophorus electricus. Proc Natl Acad Sci USA 79: 1673–1677, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Hartshorne RP, Catterall WA: Purification of the saxitoxin receptor of the sodium channel from rat brain. Proc Natl Acad Sci USA 78: 4620–4624, 1981.

    Article  PubMed  CAS  Google Scholar 

  17. Barchi RL, Murphy LE: Size characteristics of the solubilized sodium channel saxitoxin binding site from mammalian sarcolemma. Biochim Biophys Acta 597: 391–398, 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Levinson SR, Ellory JC: Molecular size of the tetrodotoxin binding site estimated by irradiation inactivation. Nature [New Biol} 245: 122–123, 1973.

    Article  CAS  Google Scholar 

  19. Barhanin J, Schmid A, Lombet A, Wheeler KP, Lazdunski M, Ellory J: Molecular size of different neurotoxin receptors on the voltage-sensitive Na+ channel. J Biol Chem 258: 700–702, 1983.

    PubMed  CAS  Google Scholar 

  20. Dudel J, Peper K, Rüdel R, Trautwein W: The effect of tetrodotoxin on the membrane current in cardiac muscle (Purkinje fibers). Plugers Arch 295: 213–226, 1967.

    Article  CAS  Google Scholar 

  21. Cohen CJ, Bean BP, Colatsky TJ, Tsien RW: Tetrodotoxin block of sodium channels in rabbit purkinje fibers. J Gen Physiol 78: 383–411, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Baer M, Best PM, Reuter H: Voltage-dependent action of tetrodotoxin in mammalian cardiac muscle. Nature 263: 344–345, 1976.

    Article  PubMed  CAS  Google Scholar 

  23. Colatsky TJ, Gadsby DC: Is tetrodotoxin block of background sodium channels in canine cardiac Purkinje fibres voltage-dependent? J Physiol (Lond) 306: 20P, 1980.

    Google Scholar 

  24. Gadsby DC, Colatsky TJ: Kinetics and voltage-independence of tetrodotoxin (TTX) block of background sodium channels in dog cardiac Purkinje fibers. Fed Proc 39: 2076, 1980.

    Google Scholar 

  25. Sauviat MP: Le canal sodium des fibres atriales de grenouille. Mode d’action de la tétrodotoxine et de l’ervatamine. Thesis, University of Orsay, 1980.

    Google Scholar 

  26. Coraboeuf E, Deroubaix E, Coulombe A: Effect of tetrodotoxin on action potential of the conducting system in the dog heart. Am J Physiol 236: 56 1567, 1979.

    Google Scholar 

  27. Lombet A, Renaud JF, Chicheportiche R, Lazdun ski M: A cardiac tetrodotoxin binding component: biochemical identification, characterization, and properties. Biochemistry 20: 1279–1285, 1981.

    Article  PubMed  CAS  Google Scholar 

  28. Catterall WA, Coppersmith J: Pharmacological properties of sodium channels in cultured rat heart cells. Mol Pharmacol 20: 533–542, 1981.

    PubMed  CAS  Google Scholar 

  29. Renaud JF, Kazazoglou T, Lombet A, Chicheportiche R, Jaimovich E, Romey G, Lazdunski: The Na+ channel in mammalian cardiac cells. Two kinds of tetrodotoxin receptors in rat heart membranes. J Biol Chem 258: 8799–8805, 1983.

    PubMed  CAS  Google Scholar 

  30. Jourdon P, Sperelakis N: Electrical properties of cultured heart cell reaggregates from newborn rat ventricles: comparison with intact non-cultured ventricles. J Mol Cell Cardiol 12: 1441–1458, 1980.

    Article  PubMed  CAS  Google Scholar 

  31. Lombet A, Frelin C, Renaud JF, Lazdunski M: Na+ channels with binding sites of high and low affinity for tetrodotoxin in different excitable and non-excitable cells. Eur J Biochem 124: 199–203, 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Harris JB, Thesleff S: Studies on tetrodotoxin-resistant action potentials in denervated skeletal muscle. Acta Physiol Scand 83: 382–388, 1971.

    Article  PubMed  CAS  Google Scholar 

  33. Catterall WA: Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Annu Rev Pharmacol Toxicol 20: 15–43, 1980.

    Article  PubMed  CAS  Google Scholar 

  34. Kupchan SM, By AW: Steroid alkaloids; the veratrum group. In: Manske RHF (ed) Alkaloids, vol 10. New York: Academic, 1968, pp 193–285.

    Google Scholar 

  35. Albuquerque EX, Daly JW: Batrachotoxin, a selective probe for channels modulating sodium conductances in electrogenic membranes. In: Chapman and Hall (eds) The specificity and action of animal, bacterial and plant toxins. 1976.

    Google Scholar 

  36. Khodorov BI, Revenko SV: Further analysis of the mechanisms of action of batrachotoxin on the membrane of myelinated nerve. Neuroscience 4: 1315 1330, 1979.

    Google Scholar 

  37. Schmidt H, Schmitt O: Effect of aconitine on the sodium permeability of node of Ranvier. Pflugers Arch 349: 133–148, 1974.

    Article  PubMed  CAS  Google Scholar 

  38. Ulbricht W: The effect of veratridine on excitable membranes of nerve and muscle. Erg Physiol 61: 18–71, 1969.

    PubMed  CAS  Google Scholar 

  39. Lazdunski M, Balerna M, Barhanin J, Chicheportiche R, Fosset M, Frelin C, Jacques Y, Lombet A, Pouysségur J, Renaud JF, Romey G, Schweitz H, Vincent JP: Molecular aspects of the structure and mechanism of the voltage-dependent sodium channel. Ann N Y Acad Sci 358: 169–182, 1980.

    Article  PubMed  CAS  Google Scholar 

  40. Mozhayeva GN, Naumov AP, Negulyaev YA, Nosyreva ED: The permeability of aconitine-modified sodium channels to univalent cations in myelinated nerve. Biochim Biophys Acta 466: 461–473, 1977.

    Article  PubMed  CAS  Google Scholar 

  41. Jacques Y, Fosset M, Lazdunski M: Molecular properties of the action potential Na+ ionophore in neuroblastoma cells. J Biol Chem 253: 7383–7392, 1978.

    PubMed  CAS  Google Scholar 

  42. Honerjäger P: Cardioactive substances that prolong the open state of sodium channel. Rev Physiol Biochem Pharmacol 92: 1–74, 1981.

    Article  Google Scholar 

  43. Renaud JF, Romey G, Lombet A, Lazdunski M: Differentiation of the fast sodium channel in embryonic heart cells followed by its interaction with neurotoxins. Proc Natl Acad Sci USA 78: 5348–5352, 1981.

    Article  PubMed  CAS  Google Scholar 

  44. Kakisawa H, Kozima T, Yanai M, Nakanishi K: Stereochemistry of grayanotoxins. Tetrahedron Lett 21: 3091–3104, 1965.

    CAS  Google Scholar 

  45. Kumazawa Z, Iriye R: Stereochemistry of grayanotoxin II. Tetrahedron Lett 12: 927–930, 1970.

    Article  PubMed  Google Scholar 

  46. Catterall WA: Activation of the action potential Na ionophore of cultured neuroblastoma cells by veratridine and batrachotoxin. J Biol Chem 250: 40534059, 1975.

    Google Scholar 

  47. Horackova M, Vassort G: Ionic mechanism of isotropic effect of veratrine on frog heart. Pflugers Arch 341: 281–284, 1973.

    Article  PubMed  CAS  Google Scholar 

  48. Horackova M, Vassort G: Excitation-contraction coupling in frog heart: effect of veratrine. Pflugers Arch 352: 291–302, 1974.

    Article  PubMed  CAS  Google Scholar 

  49. Peper K, Trautwein W: The effect of aconitine on the membrane current in cardiac muscle. Pflugers Arch 296: 328–336, 1967.

    Article  CAS  Google Scholar 

  50. Hogan PM, Albuquerque EX: The pharmacology of batrachotoxin III. Effect on the heart Purkinje fibers. J Pharmacol Exp Ther 176: 529–537, 1971.

    PubMed  CAS  Google Scholar 

  51. Honerjäger P, Reiter M: The cardiotoxic effect of batrachotoxin. Naunyn Schmiedebergs Arch Pharmacol 299: 239–252, 1977.

    Article  PubMed  Google Scholar 

  52. Shotzberger GS, Albuquerque EX, Daly JW: The effects of batrachotoxin on cat papillary muscle. J Pharmacol Exp Ther 196: 433–444, 1976.

    PubMed  CAS  Google Scholar 

  53. Sperelakis N, Pappano AJ: Increase in PNa and PK of cultured heart cells produced by veratridine. J Gen Physiol 53: 97–114, 1969.

    Article  PubMed  CAS  Google Scholar 

  54. Fosset M, De Barry J, Lenoir MC, Lazdunski M: Analysis of molecular aspects of Na+ and Cat+ uptakes by embryonic cardiac cells in culture. J Biol Chem 252: 6112–6117, 1977.

    PubMed  CAS  Google Scholar 

  55. Akera T, Ku DD, Frank M, Brody TM, Iwasa J: Effects of grayanotoxin I on cardiac Na+ K+ adenosine triphosphatase activity, transmembrane potential and myocardiac contractile force. J Pharmacol Exp Ther 247: 199–254, 1976.

    Google Scholar 

  56. Ku DD, Akera T, Frank M, Brody TM, Iwasa J: The effects of grayanotoxin I and cr-dihydrograyanotoxin II on guinea-pig myocardium. J Pharmacol Exp Ther 200: 363–372, 1977.

    PubMed  CAS  Google Scholar 

  57. Seyama I: Effect of grayanotoxin I on sa node and right atrial myocardia of the rabbit. Am J Physiol 235: C136 - C142, 1978.

    PubMed  CAS  Google Scholar 

  58. Hotta Y, Takeya K, Kobayashi S, Harada N, Sakakibara J, Shirai N: Relationship between structure, positive inotropic potency and lethal dose of grayanotoxins in guinea pig. Arch Toxicol 44: 259–267, 1980.

    Article  PubMed  CAS  Google Scholar 

  59. Honerjäger P, Frelin C, Lazdunski M: Actions, interactions and apparent affinities of various ceveratrum alkaloids at sodium channels of cultured neuroblastoma and cardiac cells. Naunyn Schmiedebergs Arch Pharmacol 321: 123–129, 1982.

    Article  PubMed  Google Scholar 

  60. Reuter H: Divalent cations as charge carriers in excitable membranes. Prog Biophys Mol Biol 26: 143, 1973.

    Article  Google Scholar 

  61. Reuter H: Exchange of calcium ions in the mammalian myocardium: mechanisms and physiological significance. Circ Res 34: 599–605, 1974.

    Article  PubMed  Google Scholar 

  62. Romey G, Lazdunski M: Lipid-soluble toxins thought to be specific for Na+ channels block Cat+ channels in neuronal cells. Nature 297: 79–80, 1982.

    Article  PubMed  CAS  Google Scholar 

  63. Rochat H, Bernard P, Couraud F: Scorpion toxins: chemistry and mode of action. Adv Cytopharmacol 3: 325–334, 1979.

    PubMed  CAS  Google Scholar 

  64. Sampieri F, Habersetzer-Rochat C: Structure-function relationships in scorpion neurotoxins: identification of the superreactive lysine residue in toxin I of Androctonus australis Hector. Biochim Biophys Acta 535: 100–109, 1978.

    Article  PubMed  CAS  Google Scholar 

  65. Romey G, Chicheportiche R, Lazdunski M, Rochat H, Miranda F, Lissitzky S: Scorpion neurotoxin a presynaptic toxin which affects both Na+ and K+ channel in axons. Biochem Biophys Res Commun 64: 115–121, 1975.

    Article  PubMed  CAS  Google Scholar 

  66. Mozhayeva GN, Naumov AP, Nosyreva ED, Grishin EV: Potential-dependent interaction of toxin from venom of the scorpion Buthus Eupus with sodium channels in myelinated fibre. Biochim Biophys Acta 597: 587–602, 1980.

    Article  PubMed  CAS  Google Scholar 

  67. Gillespie JI, Meves H: The effect of scorpion venoms on the sodium currents of the squid giant axon. J Physiol 308: 479–499, 1980.

    PubMed  CAS  Google Scholar 

  68. Schweitz H, Vincent JP, Barhanin J, Frelin C, Linden G, Hugues M, Lazdunski M: Purification and pharmacological properties of eight sea anemone toxins from Anemonia sulcata, Anthopleura xanthogrammica, Stoichactis giganteus and Actinodendron plumosum. Biochemistry 20: 5245–5252, 1981.

    Article  PubMed  CAS  Google Scholar 

  69. Martinez G, Kopeyan C, Schweitz H, Lazdunski M: Toxin III from Ammonia sulcata: primary structure. FEBS Lett 84: 247–252, 1977.

    Article  PubMed  CAS  Google Scholar 

  70. Tanaka M, Haniu M, Yasunobu KT, Norton TR: Amino acid sequence of the Anthopleura xanthogrammica heart stimulant, Anthopleurin A. Biochemistry 16: 204–208, 1977.

    Article  PubMed  CAS  Google Scholar 

  71. Wunderer G, Fritz H, Wachter E, Machleidt W: Amino-acid sequence of a coelenterate toxin: toxin II from Anemonia sulcata. Eur J Biochem 68: 193198, 1976.

    Google Scholar 

  72. Wunderer G, Eulitz M: Amino acid sequence of toxin I from Anemonia sulcata. Eur J Biochem 89: 11–17, 1978.

    Article  PubMed  CAS  Google Scholar 

  73. Barhanin J, Hugues M, Schweitz H, Vincent JP, Lazdunski M: Structure-function relationship of sea anemone toxin II from Anemonia sulcata. J Biol Chem 256: 5764–5769, 1980.

    Google Scholar 

  74. Bergman C, Dubois JM, Rojas E, Rathmayer W: Decreased rate of sodium conductance inactivation in the node of Ranvier induced by a polypeptide toxin from sea anemone. Biochim Biophys Acta 455: 175–184, 1976.

    Google Scholar 

  75. Romey G, Abita JP, Schweitz H, Wunderer G, Lazdunski M: Sea anemone toxin: a tool to study molecular mechanisms of nerve conduction and excitation-secretion coupling. Proc Natl Acad Sci USA 73: 4055–4059, 1976.

    Article  PubMed  CAS  Google Scholar 

  76. Jacques Y, Fosset M, Lazdunski M: Molecular properties of the action potential Na+ ionophore in neuroblastoma cells: interactions with neurotoxins. J Biol Chem 253: 7383–7392, 1978.

    PubMed  CAS  Google Scholar 

  77. Cahalan MD: Modification of sodium channel gating in frog myelinated nerve fibers by Centruroides sculpturatus scorpion venom. J Physiol (Lond) 244: 511–534, 1975.

    CAS  Google Scholar 

  78. Ray R, Morrow CS, Catterall W: Binding of scorpion toxin to receptor sites associated with voltage-sensitive sodium channels in synaptic nerve ending particles. J Biol Chem 253: 7307–7317, 1978.

    PubMed  CAS  Google Scholar 

  79. Vincent JP, Balerna M, Barhanin J, Fosset M, Lazdunski M: Binding of sea-anemone toxin to receptor sites associated with the gating system of the sodium channel in synaptic nerve endings in vitro. Proc Natl Acad Sci USA 77: 1646–1650, 1980.

    Article  PubMed  CAS  Google Scholar 

  80. Catterall WA: Membrane potential-dependent binding of scorpion toxin to the action potential sodium ionophore: studies with a toxin derivative prepared by lactoperoxidase catalyzed iodination. J Biol Chem 252: 8660–8668, 1977.

    PubMed  CAS  Google Scholar 

  81. Coraboeuf E, Deroubaix E, Tazieff-Depierre F: Effect of toxin II isolated from scorpion venom on action potential and contraction of mammalian heart. J Mol Cell Cardiol 7: 643–653, 1975.

    Article  PubMed  CAS  Google Scholar 

  82. Ravens U: Electromechanical studies of an Anemonia sulcata toxin in mammalian cardiac muscle. Naunyn Schmiedebergs Arch Pharmacol 296: 73–78, 1976.

    Article  PubMed  CAS  Google Scholar 

  83. Romey G, Renaud JF, Fosset M, Lazdunski M: Pharmacological properties of the interaction of a sea anemone polypeptide toxin with cardiac cells in culture. J Pharmacol Exp Ther 213: 607–615, 1980.

    PubMed  CAS  Google Scholar 

  84. Shibata S, Izumi T, Seriguchi DG, Norton TR: Further studies on the positive inotropic effect of the polypeptide anthopleurin A from a sea anemone. J Pharmacol Exp Ther 205: 683–692, 1978.

    PubMed  CAS  Google Scholar 

  85. Couraud F, Rochat H, Lissitzky S: Binding of scorpion neurotoxins to chick embryonic heart cells in culture and relationship to calcium uptake and membrane potential. Biochemistry 19: 457–462, 1980.

    Article  PubMed  CAS  Google Scholar 

  86. Alsen C, Beress L, Fischer K, Proppe D, Reinberg T, Sattler RW: The action of a toxin from the sea anemone Anemonia sulcata upon mammalian heart muscles. Naunyn Schmiedebergs Arch Pharmacol 295: 55–62, 1976.

    Article  PubMed  CAS  Google Scholar 

  87. Shibata S, Norton TR, Izumi T, Matsuo T, Katsuki S: A polypeptide (AP.A) from sea anemone (Anthopleura xanthogrammica) with potent positive isotropic action. J Pharmacol Exp Ther 199: 298–309, 1976.

    PubMed  CAS  Google Scholar 

  88. Couraud F, Rochat H, Lissitzky S: Stimulation of sodium and calcium uptakes by scorpion toxin in chick embryo heart cells. Biochim Biophys Acta 433: 90–100, 1976.

    Article  PubMed  CAS  Google Scholar 

  89. Fujiwara M, Muramatsu I, Hidaka H, Ikushima S, Ashida K: Effects of goniopora toxin, a polypeptide isolated from coral, on electromechanical properties of rabbit myocardium. J Pharmacol Exp Ther 210: 153–157, 1979.

    PubMed  CAS  Google Scholar 

  90. Jaimovich E, Ildefonse M, Barhanin J, Rougier O, Lazdunski M: Centruroides toxin, a selective blocker of surface Na+ channels in skeletal muscle: voltage-clamp analysis and biochemical characterization of the receptor. Proc Natl Acad Sci USA 79: 38963900, 1982.

    Google Scholar 

  91. Barhanin J, Giglio JR, Leopold P, Schmid A, Sampaio SV, Lazdunski M: Tityus serrulatus venom contains two classes of toxins: Tityus y toxin is a new tool with a very high affinity for studying the Na+ channel. J Biol Chem 257: 12553–12558, 1982.

    PubMed  CAS  Google Scholar 

  92. Sperelakis N, Shigenobu K, McLean MJ: Membrane cation channels: changes in developing hearts, in cell culture and in organ culture. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. New York: Raven, 1975, pp 209–234.

    Google Scholar 

  93. Bernard C: Establishment of ionic permeabilities of the myocardial membrane during embryonic development of the rat. In: Lieberman M, Sano T (eds) Developmental and physiological correlates of cardiac muscle. New York: Raven, 1975, pp 169184.

    Google Scholar 

  94. Frelin C, Lombet A, Vigne P, Romey G, Lazdunski M: Properties of Na+ channels in fibroblasts. Biochem Biophys Res Commun 107: 202–208, 1982.

    Article  PubMed  CAS  Google Scholar 

  95. Knox JR, Slobbe J: Three novel alkaloids from Ervatamina orientales. Tetrahedron Lett A: 2149–2151, 1971.

    Google Scholar 

  96. Frelin C, Vigne P, Ponzio G, Romey G, Tourneur Y, Husson HP, Lazdunski M: The interaction of ervatamine and epiervatamine with the action potential Na+ ionophore. Mol Pharmacol 20: 107112, 1981.

    Google Scholar 

  97. Pichon Y, Sauviat MP: Effect of ervatamine on the sodium current in squid giant axons. J Physiol (Lond) 280: 29–30P, 1978.

    Google Scholar 

  98. Sauviat MP: Effects of ervatamine chlorhydrate on cardiac membrane currents in frog atrial fibres. Br J Pharmacol 71: 41–49, 1980.

    PubMed  CAS  Google Scholar 

  99. Lee CY: Recent advances in chemistry and pharmacology of snake toxins. In: Ceccarelli B, Clementi F (eds) Advances in cytopharmacology, vol 3. New York: Raven, 1979, pp 1–16.

    Google Scholar 

  100. Vincent JP, Schweitz H, Chicheportiche R, Fosset M, Balerna M, Lenoir MC, Lazdunski M: Molecular mechanism of cardiotoxin action on axonal membranes. Biochemistry 15: 3171–3175, 1976.

    Article  PubMed  CAS  Google Scholar 

  101. Vincent JP, Balerna M, Lazdunski M: Properties of association of cardiotoxin with lipid vesicles and natural membranes: a fluorescence study. FEBS Lett 85: 103–108, 1978.

    Article  PubMed  CAS  Google Scholar 

  102. Gulik-Krzywichi T, Balerna M, Vincent JP, Lazdunski M: Freeze-fracture study of cardiotoxin action on axonal membrane and axonal membrane lipid vesicles. Biochim Biophys Acta 643: 101–114, 1981.

    Article  Google Scholar 

  103. Moore RE, Scheuer PJ: Palytoxin: a new marine toxin from Coelentarate. Science 172: 495–498, 1971.

    Article  PubMed  CAS  Google Scholar 

  104. Rayner MD, Sanders BJ, Harris SM, Lin YC, Morton BE: Palytoxin: effects on contractility and 4SCa2+ uptake in isolated ventricle strips. Res Commun Chem Pathol Pharmacol 11: 55–65, 1975.

    PubMed  CAS  Google Scholar 

  105. Narahashi T: Effects of insecticides on nervous conduction and synaptic transmission. In: Wilkinson CF (ed) Insecticide biochemistry and physiology. New York: Plenum, 1976, pp 327–352.

    Google Scholar 

  106. Jacques Y, Romey G, Cavey MT, Kartalovski B, Lazdunski M: Interaction of pyrethroids with the Na+ channel in mammalian neuronal cells in culture. Biochim Biophys Acta 600: 882–897, 1980.

    Article  PubMed  CAS  Google Scholar 

  107. Sperelakis N: Effects of cardiotoxic agents on the electrical properties of myocardial cells. In: Balazs T (ed) Cardiac toxicology, vol 1. Boca Raton FL: CRC, 1981, pp 39–108.

    Google Scholar 

  108. Ehlert FJ, Ito ja E, Roeske WR, Yamamura HI: The interaction of [3H}nitredipine with receptors for calcium antagonists in the cerbral cortex and heart of rats. Biochem Biophys Res Commun 104: 937–943, 1982.

    Article  PubMed  CAS  Google Scholar 

  109. Bolger GT, Gengo PJ, Luchowski EM, Siegel H, Triggle DJ, Janis RA: High affinity binding of a calcium channel antagonist to smooth and cardiac muscle. Biochem Biophys Res Commun 104: 1604–1609, 1982.

    Article  PubMed  CAS  Google Scholar 

  110. Hugues M, Romey G, Duval D, Vincent JP, Lazdunski M: Apamin as a selective blocker of the calcium-dependent potassium channel in neuroblastoma cells: voltage-clamp and biochemical characterization of the toxin receptor. Proc Natl Acad Sci USA 79: 1308–1312, 1982.

    Article  PubMed  CAS  Google Scholar 

  111. Meech RW: Calcium-dependent potassium activation in nervous tissue. Annu Rev Biophys Bioeng 7: 1–18, 1978.

    Article  PubMed  CAS  Google Scholar 

  112. Barrett JN, Barrett EF, Dribin LB: Calcium-dependent slow potassium conductance in rat skeletal myotubes. Dev Biol 82: 258–266, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lazdunski, M., Renaud, J.F. (1984). Effects of Cardiotoxins on Membrane Ionic Channels. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1171-4_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1171-4_24

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1173-8

  • Online ISBN: 978-1-4757-1171-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics