Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 34))

Abstract

Injured cardiac myocytes accumulate Ca2+. It does not seem to matter whether the injury is due to reperfusion after prolonged periods of normothermic ischemia [1, 2], sustained hypoxia [3], a naturally occurring cardiomyopathy, or the reintroduction of Ca2+ after only a few minutes of Ca2+-free perfusion [4–6], the end result is the same—that is, the cells become overloaded with Ca2+. The primary aim of this chapter is to establish why the injured myocytes accumulate Ca2+, and then to define the route by which this Ca2+ enters. Finally we will consider the consequences of the resultant Ca2+ overloading.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Shen AC, Jennings RB: Myocardial calcium and magnesium in acute ischemic injury. Am J Pathol 67: 417–440, 1972.

    PubMed  CAS  Google Scholar 

  2. Nayler WG: The role of calcium in the ischemic myocardium. Am J Pathol 102: 126–134, 1981.

    Google Scholar 

  3. Nayler WG, Ferrari R, Poole-Wilson PA, Yepez CE: A protective effect of a mild acidosis on hypoxic heart muscle. J Mol Cell Cardiol 11: 1053–1071, 1979.

    Article  PubMed  CAS  Google Scholar 

  4. Alto LE, Dhalla NS: Myocardial cation contents during induction of calcium paradox. Am J Physiol 237: H713 - H719, 1979.

    PubMed  CAS  Google Scholar 

  5. Nayler WG, Grinwald PM: Dissociation of Ca2+ accumulation from protein release in calcium paradox: effect of barium. Am J Physiol 242: H203 - H210, 1982.

    PubMed  CAS  Google Scholar 

  6. Zimmerman ANE, Daems W, Hulsmann WC, Snijder J, Wisse E, Durrer D: Morphological changes of heart muscle caused by successive perfusion with calcium-free and calcium containing solutions (calcium paradox). Cardiovasc Res 1: 201–209, 1967.

    Article  CAS  Google Scholar 

  7. Nayler WG: Protection of the myocardium against post ischemic reperfusion damage: the combined effect of hypothermia and nifedipine. J Thorac Cardiovasc Surg, 1982 (in press).

    Google Scholar 

  8. Nayler WG, Ferrari R, Williams A: Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Am J Cardiol 46: 242–248, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Bourdillon PD, Poole-Wilson PA: The effects of verapamil, quiescence, and cardioplegia on calcium exchange and mechanical function in ischemic rabbit myocardium. Circ Res 50: 360–368, 1982.

    Article  PubMed  CAS  Google Scholar 

  10. Peng CF, Kane JJ, Murphy ML, Straub KD: Abnormal mitochondrial oxidative phosphorylation of ischemic myocardium reversed by Caz+-chelating agents. J Mol Cell Cardiol 9: 897–908, 1977.

    Article  PubMed  CAS  Google Scholar 

  11. Shen AC, Jennings RB: Kinetics of calcium accumulation in acute myocardial ischemic injury. Am J Pathol 67: 441–452, 1972.

    PubMed  CAS  Google Scholar 

  12. Shine KI, Douglas AM, Ricchiuti NV: Calcium, strontium, and barium movements during ischemia and reperfusion in rabbit ventricle: implications for myocardial preservation. Circ Res 43: 712–720, 1978.

    Article  PubMed  CAS  Google Scholar 

  13. Caroni P, Carafoli E: The Caz+-pumping ATPase of heart sarcolemma: characterization, calmodulin dependence, and partial purification. J Biol Chem 256: 3263–3270, 1981.

    PubMed  CAS  Google Scholar 

  14. Reuter H: Exchange of calcium ions in the mammalian myocardium: mechanisms and physiological significance. Circ Res 34: 599–605, 1974.

    Article  PubMed  Google Scholar 

  15. Langer GA: Sodium-calcium exchange in the heart. Annu Rev Physiol 44: 435–449, 1982.

    Article  PubMed  CAS  Google Scholar 

  16. Tada M, Yamamoto T, Tonomura Y: Molecular mechanism of active calcium transport by sarcoplasmic reticulum. Physiol Rev 58: 1–79, 1978.

    PubMed  CAS  Google Scholar 

  17. Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C: The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol 6: 361–371, 1974.

    Article  PubMed  CAS  Google Scholar 

  18. Jennings RB, Hawkins HK, Lowe JE, Hill ML, Klotman S, Reimer KA: Relation between high energy phosphate and lethal injury in myocardial ischemia in the dog. Am J Pathol 92: 187–214, 1978.

    PubMed  CAS  Google Scholar 

  19. Jennings RB, Reimer KA, Hill ML, Mayer SE: Total ischemia in dog hearts, in vivo. 1. Comparison of high energy phosphate production, utilization, and depletion, and of adenine nucleotide catabolism in total ischemia in vivo vs. severe ischemia in vivo. Circ Res 49: 892–900, 1981.

    Article  PubMed  CAS  Google Scholar 

  20. Jennings RB, Reimer KA: Lethal myocardial ischemic injury. Am J Pathol 102: 241–255, 1981.

    PubMed  CAS  Google Scholar 

  21. Reimer KA, Jennings RB, Hill ML: Total ischemia in dog hearts, in vitro. 2. High energy phosphate depletion and associated defects in energy metabolism, cell volume regulation, and sarcolemmal integrity. Circ Res 49: 901–911, 1981.

    Article  PubMed  CAS  Google Scholar 

  22. Beckman JK, Owens K, Knauer TE, Weglicki WB: Hydrolysis of sarcolemma by lysosomal lipases and inhibition by chlorpromazine. Am J Physiol 242: H652 - H656, 1982.

    PubMed  CAS  Google Scholar 

  23. Chien KR, Reeves JP, Buja LM, Bonte F, Parkey RW, Willerson JT: Phospholipid alterations in canine ischemic myocardium: temporal and topographical correlations with Tc-99m-PPi accumulation and an in vitro sarcolemmal Ca2+ permeability defect. Circ Res 48: 711–719, 1981.

    Article  PubMed  CAS  Google Scholar 

  24. La Noue KF, Watts JA, Koch CD: Adenine nucleotide transport during cardiac ischemia. Am J Physiol 241: H663 - H671, 1981.

    Google Scholar 

  25. Dunnett J, Nayler WG: Effect of pH on calcium accumulation and release of isolated fragments of cardiac and skeletal muscle sarcoplasmic reticulum. Biochim Biophys Acta 198: 434–438, 1979.

    CAS  Google Scholar 

  26. Bersohn MM, Philipson KD, Fukushima JY: Sodium-calcium exchange and sarcolemmal enzymes in ischemic rabbit hearts. Am J Physiol 242: C288 - C295, 1982.

    PubMed  CAS  Google Scholar 

  27. Katz AM, Tada M: The “stone heart”: a challenge to the biochemist. Am J Cardiol 29: 578–580, 1972.

    Article  PubMed  CAS  Google Scholar 

  28. Feher JJ, Briggs FN, Hess ML: Characterization of cardiac sarcoplasmic reticulum from ischemic myocardium: comparison of isolated sarcoplasmic reticulum with unfractionated homogenates. J Mol Cell Cardiol 12: 427–432, 1980.

    Article  PubMed  CAS  Google Scholar 

  29. Locke FS, Rosenheim O: Contributions to the physiology of the isolated heart: the consumption of dextrose by mammalian cardiac muscle. J Physiol (Lond) 36: 205–220, 1907.

    CAS  Google Scholar 

  30. Chizzonite RA, Zak R: Calcium-induced cell death: susceptibility of cardiac myocytes is age-dependent. Science 213: 1508–1510, 1981.

    Article  PubMed  CAS  Google Scholar 

  31. Boink ABTJ, Ruigrok TJ, Zimmerman ANE: Changes in high energy phosphate compounds of isolated rat hearts during Ca2+-free perfusion and re-perfusion with calcium. J Mol Cell Cardiol 8: 973–979, 1976.

    Article  CAS  Google Scholar 

  32. Alto LE, Dhalla NS: Role of changes in microsomal calcium uptake in the effects of reperfusion of Caz+deprived rat hearts. Circ Res 48: 17–24, 1981.

    Article  PubMed  CAS  Google Scholar 

  33. Hearse DJ, Baker JE, Humphrey SM: Verapamil and the calcium paradox. J Mol Cell Cardiol 12: 733–740, 1980.

    Article  PubMed  CAS  Google Scholar 

  34. Holland CE Jr, Olson RE: Prevention by hypothermia of paradoxical calcium necrosis in cardiac muscle. J Mol Cell Cardiol 7: 917–928, 1975.

    Article  PubMed  CAS  Google Scholar 

  35. Nayler WG: Cobalt, manganese and the calcium paradox. J Mol Cell Cardiol (Suppl 2 ) 14: 11, 1982.

    Google Scholar 

  36. Bielecki K: The influence of changes in pH of the perfusion fluid on the occurrence of the calcium paradox in the isolated rat heart. Cardiovasc Res 3: 268–271, 1969.

    Article  PubMed  CAS  Google Scholar 

  37. Muir AR: A calcium-induced contracture of cardiac muscle cells. J Anat 102: 148–149, 1968.

    Google Scholar 

  38. Crevey BJ, Langer GA, Frank JS: Role of Caz+ in the maintenance of rabbit myocardial cell membrane structural and functional integrity. J Mol Cell Cardiol 10: 1081–1100, 1981.

    Article  Google Scholar 

  39. Grinwald PM, Nayler WG: Calcium entry in the calcium paradox. J Mol Cell Cardiol 3: 867–880, 1981.

    Article  Google Scholar 

  40. Winegrad S, Robinson TF: Force generation among cells in the relaxing heart. Eur J Cardiol (Suppl) 7: 63–70, 1978.

    Google Scholar 

  41. Harding DP, Poole-Wilson PA: Calcium exchange in rabbit myocardium during and after hypoxia: effect of temperature and substrate. Cardiovasc Res 14: 435–445, 1980.

    Article  PubMed  CAS  Google Scholar 

  42. New W, Trautwein W: The ionic nature of slow inward current and its relation to a contraction. Pflugers Arch 334: 24–38, 1972.

    Article  PubMed  CAS  Google Scholar 

  43. Nayler WG, Thompson JE, Jarrott B: The interaction of calcium antagonists (slow channel inhibitors) with myocardial alpha adrenoceptors. J Mol Cell Cardiol 14: 13–20, 1982.

    Article  Google Scholar 

  44. Krishtal OA, Pidoplichko VI, Shaknovalov Yu A: Conductance of the calcium channel in the membrane of snail neurones. J Physiol 310: 410–434, 1981.

    Google Scholar 

  45. Ganote CE, Kaltenbach JP: Oxygen-induced enzyme release: early events and a proposed mechanism. J Mol Cell Cardiol 11: 389–406, 1979.

    Article  PubMed  CAS  Google Scholar 

  46. Nayler WG, Fassold E, Yepez C: Pharmacological protection of mitochondrial function in hypoxic heart muscle: effect of verapamil, propranolol and methylpridesolone. Cardiovasc Res 12: 152–161, 1978.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Nayler, W.G., Daly, M.J. (1984). Calcium and the Injured Cardiac Myocyte. In: Sperelakis, N. (eds) Physiology and Pathophysiology of the Heart. Developments in Cardiovascular Medicine, vol 34. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1171-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1171-4_22

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1173-8

  • Online ISBN: 978-1-4757-1171-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics