Lakes pp 179-235 | Cite as

The Mineralogy and Related Chemistry of Lake Sediments

  • Blair F. Jones
  • Carl J. Bowser


The sediment reservoir of a lake plays an important role in helping to elucidate the many processes occurring within the total lake system, including its surrounding surface and ground water drainage basins. Of course, lake bottoms have long been recognized as the depositional site of both mineral and organic matter that is transported to the lake from the drainage basin, as well as matter which forms and settles from within the water body proper. However, early studies of lakes tended to treat the sediments as simply a repository having little or no additional reaction with the lake once deposited. The sediments were viewed primarily as a record of the lake history.


Clay Mineral Lake Sediment Great Lake Pore Fluid Lacustrine Sediment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, H. E., and J. R. Kramer. (1972). Nutrients in Natural Waters. Wiley-Interscience, New York, NY.Google Scholar
  2. Anderson, B. J., and E. A. Jenne. (1970). Free-iron and manganese oxide content of reference clays. Soil Sci., 109.: 163–169.CrossRefGoogle Scholar
  3. Anderson, J. U. (1963). An improved pretreatment for mineralogical analysis of samples containing organic matter. Clays Clay Min., 10.: 380–388.CrossRefGoogle Scholar
  4. Anderson, R. Y. (1977). Short term sedimentation response in lakes in western United States as measured by automated sampling. Limnol. Oceanogr., 22.: 423–433.CrossRefGoogle Scholar
  5. Anthony, R. S. (1977). Iron-rich rhythmically laminated sediments in Lake of the Clouds, northeastern Minn. Limnol. Oceanogr., 22.: 45–54.CrossRefGoogle Scholar
  6. Arneman, H. F., and H. E. Wright, Jr. (1959). Petrography of some Minnesota tills. J. Sed. Petrol. 29.: 540–554.Google Scholar
  7. Austin, G. S., and R. K. Leininger. (1976). The effect of heat-treating sedimented mixed-layer illite-smectite as related to quantitative clay mineral determinations. J. Sed. Pe.-trol.,46.:206–216.Google Scholar
  8. Barnes, I., and J. R. O’Neil. (1971). Calcium-magnesium carbonate solid solutions from Holocene conglomerate cements and travertines in the Coast Range of California. Geochim. Cosmochim. Acta. 35.: 699–718.CrossRefGoogle Scholar
  9. Barnes, R. O. (1973). An in situ. interstitial water sampler for use in unconsolidated sediments. Deep Sea Res., 20.: 1125–1128.Google Scholar
  10. Beauchamp, R. S. A. (1964). The Rift Valley lakes of Africa. Verh. Int. Verein. Limnol., 15: 91–99.Google Scholar
  11. Beeton, A. M., and W. T. Edmondson. (1972). The eutrophication problem. J. Fish. Res. Board Can., 29.: 673–682.CrossRefGoogle Scholar
  12. Benninger, L. K., R. C. Aller, E. P. Dion, and K. K. Turekian. (1977). Pb-210 distribution in sediments of Long Island Sound. Trans. Am. Geophys. Union., 58.: 422.Google Scholar
  13. Berner, R. A. (1971). Principles of Chemical Sedimentology. McGraw-Hill, New York, NY.Google Scholar
  14. Berner, R. A. (1974). Kinetic models for the early diagenesis of nitrogen, sulfur, phosphorus, and silicon in anoxic marine sediments. Pp. 427–450. In: E. D. Goldberg (ed.), The Sea. vol. 5.Google Scholar
  15. Berner, R. A. (1976a). The benthic boundary layer from the point of view of a geochemist. In: N. McCave (ed.), The Benthic Boundary Layer. Plenum Press, New York, NY.Google Scholar
  16. Berner, R. A. (1976). Inclusion of adsorption in the modelling of early diagenesis. Earth Plan. Sci. Lett., 29.: 333–340.CrossRefGoogle Scholar
  17. Berner, R. A. (1977). Stoichiometric models for nutrient regeneration in anoxic sediments. Limnol. Oceanogr., 22.: 781–786.CrossRefGoogle Scholar
  18. Berner, R. A., and G. R. Holdren, Jr. (1977). Mechanism of feldspar weathering. Some observational evidence. Geology., 5.: 369–372.CrossRefGoogle Scholar
  19. Blatt, H., G. Middleton, and R. Murray. (1972). Origin of Sedimentary Rocks. Prentice-Hall, Englewood Cliffs, NJ.Google Scholar
  20. Bodine, M. W., Jr., and T. H. Fernalld. (1973). EDTA dissolution of gypsum, anhydrite, and Ca-Mg carbonates. J. Sed. Petrol. 43.: 1152–1156.Google Scholar
  21. Bonner, W. P., T. Tamura, C. W. Francis, and J. W. Amburgey, Jr. (1970). Zonal centrifugation-a tool for environmental studies. Env. Sci. Technol. 4.: 821–825.CrossRefGoogle Scholar
  22. Bortleson, G. C. (1970). The chemical investigation of recent lake sediments from Wisconsin lakes and their interpretation. Ph.D. Thesis, Univ. Wisconsin.Google Scholar
  23. Bortleson, G. C., and G. F. Lee. (1972). Recent sedimentary history of Lake Mendota, Wis. Environ. Sci. Tech., 9.: 799–808.CrossRefGoogle Scholar
  24. Bortleson, G. C., and G. Lee. (1974). Phosphorus, iron, manganese distribution in sediment cores of six Wisconsin lakes. Limnol. Oceanogr., 19.: 794–801.CrossRefGoogle Scholar
  25. Bouma, A. H., and N. F. Marshall. (1964). A method for obtaining and analyzing oceanic sediment samples. Marine Geol., 2.: 81–99.CrossRefGoogle Scholar
  26. Bower, C. A. (1963). Adsorption of O-phenanthroline by clay minerals and soils. Soil Sci., 95.: 192–195.CrossRefGoogle Scholar
  27. Bower, C. A., and J. T. Hatcher. (1966). Simultaneous determination of surface area and cation-exchange capacity. Soil Sci. Soc. Am. Proc., 30: 525–527.CrossRefGoogle Scholar
  28. Bowser, C. J. (1974). Core and pore fluid studies. In: Cruise Report Mn74–01, R/V Moana Wave, Univ. Hawaii. Publ. HIG-74–9:177–183.Google Scholar
  29. Bowser, C. J., E. Callender, and R. Rossman. (1970). Electron-probe and x-ray studies of freshwater ferromanganese nodules from Wisconsin and Michigan. Geol. Soc. Am. Abs., 2.: 500–501.Google Scholar
  30. Bradbury, J. P. (1975). Diatom stratigraphy and human settlement in Minnesota. Geol. Soc. Am. Spec. Paper., 171.: 1–74.Google Scholar
  31. Bradbury, J. P., and R. O. Megard. (1972). Stratigraphic record of pollution in Shagawa Lake, Northeastern Minnesota. Geol. Soc. Am. Bull., 83.: 2639–2648.CrossRefGoogle Scholar
  32. Bradbury, J. P., and T. C. Winter. (1976). Areal distribution and stratigraphy of diatoms in the sediments of Lake Sallie, Minnesota. Ecology., 57.: 1005–1014.CrossRefGoogle Scholar
  33. Bray, J. T., O. P. Bricker, and B. N. Troup. (1973). Phosphate in interstitial waters of anoxic sediments: oxidation effects during sampling procedure. Science., 180.: 1362–1364.PubMedCrossRefGoogle Scholar
  34. Brooks, R. A., and R. E. Ferrell, Jr. (1970). The lateral distribution of clay minerals in Lakes Pontchartrain and Maurepas, Louisiana. J. Sed. Petrol., 40.: 855–863.Google Scholar
  35. Brookins, D. G. (1972). Possible accumulation of authigenic, expandable-type clay minerals in the substructure of Tuttle Creek Dam, Kansas, U.S.A. Eng. Geol., 6: 251–259.CrossRefGoogle Scholar
  36. Bruland, K. W., M. Koide, C. Bowser, L. J. Maher, and E. D. Goldberg. (1975). Lead-210 and pollen geochronologies on Lake Superior sediments. Quat. Res., 5.: 89–98.CrossRefGoogle Scholar
  37. Brunskill, G. J. (1969). Fayetteville Green Lake, New York. II. Precipitation and sedimentation of calcite in a meromictic lake with laminated sediments. Limnol. Oceanogr., 14.: 830–847.CrossRefGoogle Scholar
  38. Brunskill, G. J., D. Povoledo, B. W. Graham, and M. P. Stainton. (1971). Chemistry of surface sediments of sixteen lakes in the experimental lakes area, Northwestern Ontario. J. Fish. Res. Board Can., 28.: 277–294.CrossRefGoogle Scholar
  39. Burns, N. M., and J. O. Nriagu. (1976). Forms of iron and manganese in Lake Erie waters. J. Fish. Res. Board Can., 33.: 463–470.CrossRefGoogle Scholar
  40. Burns, N. M., J. D. H. Williams, J. M. Jaquet, A. L. W. Kemp, and D. C. L. Lam. (1976). A phosphorus budget for Lake Erie. J. Fish. Res. Board Can., 33.: 564–573.CrossRefGoogle Scholar
  41. Burns, R. G., and V. M. Burns. (1977). Mineralogy of ferromanganese nodules. In: G. P. Glasby (ed.), Marine Manganese Deposits. Elsevier, New York, NY.Google Scholar
  42. Callender, E. (1968). The postglacial sedimentology of Devils Lake, North Dakota. Ph.D. thesis, Univ. of North Dakota.Google Scholar
  43. Callender, E. (1969). Geochemical characteristics of Lakes Michigan and Superior sediments. Pp. 124–160. Proc. 12th Conf. Great Lakes Res.Google Scholar
  44. Callender, E., and C. J. Bowser. (1976). Freshwater ferromanganese deposits. Pp. 343–394. In: K. H. Wolf (ed.), Handbook of Strata-Bound and Stratiform Ore Deposits. Vol. 7, Elsevier, New York, N.Y.Google Scholar
  45. Callender, E., C. J. Bowser, and R. Rossman. (1974). Geochemistry of ferromanganese and manganese carbonate crusts from Green Bay, Lake Michigan. Trans. Am. Geophys. Union., 54.: 340.Google Scholar
  46. Calvert, S. E., and N. B. Price. (1977). Shallow water, continent margin deposits: distribution and geochemistry. In: G. P. Glasby (ed.), Marine Manganese Deposits. Elsevier, New York, NY.Google Scholar
  47. Carlson, R. E. (1977). A trophic state index for lakes. Limnol. Oceanogr., 22.: 361–369.CrossRefGoogle Scholar
  48. Chao, T. T. (1972). Selective dissolution of manganese oxides from soils and sediments with acidified hydroxyl-amine hydrochloride. Soil Sci. Soc. Am. Proc., 36.: 764–678.CrossRefGoogle Scholar
  49. Chayes, F. (1971). Ratio Correlation. Univ. Chicago Press, Chicago, IL.Google Scholar
  50. Chester, R., and M. J. Hughes. (1967). A chemical technique for the separation of ferromanganese minerals, carbonate minerals, and adsorbed trace elements from pelagic sediments. Chem. Geol., 2.: 249–262.CrossRefGoogle Scholar
  51. Chung, F. H. (1974a). Quantitative interpretation of x-ray diffraction patterns of mixtures. I. Matrix-flushing method for quantitative multicomponent analysis. J. Appl. Cryst., 7.: 519–525.CrossRefGoogle Scholar
  52. Chung, F. H. (1974b). Quantitative interpretation of x-ray diffraction patterns of mixtures. II. Adiabatic principal of x-ray diffraction analysis of mixtures. J. Appl. Cryst., 7.: 526–531.CrossRefGoogle Scholar
  53. Chung, F. H. (1975). Quantitative interpretation of x-ray diffraction patterns of mixtures. III. Simultaneous determination of a set of reference intensities. J. Appl. Cryst., 8.: 17–19.CrossRefGoogle Scholar
  54. Coakley, J. P., and B. R. Rust. (1968). Sedimentation in an Arctic Lake. J. Sed. Petrol., 38.: 1290–1300.Google Scholar
  55. Cody, R. D., and G. L. Thompson. (1976). Quantitative x-ray powder diffraction analyses of clays using an orienting internal standard and pressed disks of bulk shale samples. Clays Clay Min., 24.: 224–231.CrossRefGoogle Scholar
  56. Coey, J. M. D., D. W. Schindler, and F. Weber. (1974). Iron compounds in lake sediments. Can. J. Earth Sci., 11.: 1489–1493.CrossRefGoogle Scholar
  57. Cook, H. E., P. D. Johnson, J. C. Matti, and I. Zemmels. (1975). Methods of sample preparation and x-ray diffraction data analysis. Initial Repts. Deep Sea Drilling Project., Natl. Sci. Foundation, 38.: 999–1007.Google Scholar
  58. Court, J. E., C. R. Goldman, and N. J. Hyne. (1972) Surface sediments in Lake Tahoe, California-Nevada. J. Sed. Petrol., 42.: 359–377.Google Scholar
  59. Craig, R. J. (1972). Pollen influx to laminated sediments: a pollen diagram from northeastern Minnesota. Ecology., 53.: 46–57.CrossRefGoogle Scholar
  60. Cronan, D. S. (1969). Inter-element associations in some pelagic deposits. Chem. Geol., 5.: 99–106.CrossRefGoogle Scholar
  61. Cronan, D. S., and R. L. Thomas. (1972). Geochemistry of ferromanganese oxide concentrations and associated deposits in Lake Ontario. Geol. Soc. Am. Bull., 83.: 1493–1502.CrossRefGoogle Scholar
  62. Cubitt, J. M. (1975). A regression-technique for the analysis of shales by x-ray diffractometry. J. Sed. Petrol., 45.: 546–553.Google Scholar
  63. Cuthbert, F. L. (1944). Clay minerals in Lake Erie sediments. Am. Mineral., 29.: 378–388.Google Scholar
  64. D’Anglejan, B. F. (1967). Origin of marine phosphorites off Baja California, Mexico. Marine Geol., 5.: 15–44.CrossRefGoogle Scholar
  65. Davis, M. B. (1968). Pollen grains in lake sediments: redeposition caused by seasonal water recirculation. Science., 162.: 796–799.PubMedCrossRefGoogle Scholar
  66. Davis, R. B., D. L. Thurlow and F. E. Brewster. (1975). Effects of burrowing tubificid worms on the exchange of phosphorous between lake sediments and overlying water. Verh. Int. Verein. Limnol., 19.: 382–394.Google Scholar
  67. Dean, J. A. (1969). Chemical Separation Methods. Van Nostrand Reinhold, New York, NY.Google Scholar
  68. Dean, W. E., and E. Gorham. (1976a). Major chemical and mineralogical components of profundal surface sediments in Minnesota Lakes. Limnol. Oceanogr., 21.: 259–284.CrossRefGoogle Scholar
  69. Dean, W. E., and E. Gorham. (1976b). Classification of Minnesota Lakes by Q- and R-mode factor analysis of sediment mineralogy and geochemistry. In: D. F. Meriam (ed.), Quantitative Techniques for the Analysis of Sediments. Pergamon Press, New York, NY.Google Scholar
  70. Degens, E. T., and G. Kulbicki. (1973). Hydrothermal origin of metals in some East African Rift Lakes. Mineral. Deposita., 8.: 388–404.CrossRefGoogle Scholar
  71. Degens, E. T., R. P. von Herzen, and H. K. Wong. (1971). Lake Tanganyika: water chemistry, sediments, geological structure. Naturwissenschaften., 58.: 229–241.CrossRefGoogle Scholar
  72. Degens, E. T., H. Okada, S. Honjo, and J. C. Hathaway. (1972). Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa. Mineral. Deposita., 7: 1–12.CrossRefGoogle Scholar
  73. Degens, E. T., R. P. von Herzen, H-K. Wong, W. G. Deuser, and H. W. Jannasch. (1973). Lake Kivu: structure, chemistry and biology of an East African Rift Lake. Geol. Rundschau., 62.: 245–277.CrossRefGoogle Scholar
  74. Delfino, J. J., G. C. Bortleson, and G. F. Lee. (1969). Distribution of Mn, Fe, P, Mg, K, Na, and Ca in the surface sediments of Lake Mendota, Wisconsin. Environ. Sci. Technol., 3.: 1189–1192.CrossRefGoogle Scholar
  75. Dell, C. I. (1971). Late Quaternary sedimentation in Lake Superior. PhD. Thesis, Univ. of Michigan.Google Scholar
  76. Dell, C. I. (1973a). A special mechanism for varve formation in a glacial lake. J. Sed. Petrol. 43.: 838–840.Google Scholar
  77. Dell, C. I. (1973b). Vivianite: an authigenic phosphate mineral in Great Lake sediments. Pp. 1027–1028. Proc. 16th. Conf Great Lakes Res.Google Scholar
  78. Dell, C. I. (1974). The stratigraphy of northern Lake Superior late-glacial and post-glacial sediments. Pp. 179–192. Proc. 17th Conf. Great Lakes Res., Pt. 1.Google Scholar
  79. Deudall, I. W., and D. E. Buckley. (1971). Calcium carbonate monohydrate in seawater. Nature., Phys. Sci., 234.: 39–30.Google Scholar
  80. Devine, S. B., R. E. Ferrell, and G. K. Billings. (1972). A quantitative x-ray diffraction technique applied to fine-grained sediments of the deep Gulf of Mexico. J. Sed. Petrol., 42.: 468–475.Google Scholar
  81. Douglas, L. A., and F. Fiessinger. (1971). Degradation of clay minerals by H2O2 treatments to oxidize organic matter. Clays Clay Min., 19.: 67–68.CrossRefGoogle Scholar
  82. Dudas, M. J., and M. E. Harward. (1971). Effect of dissolution treatment on standard and soil clays. Soil Sci. Soc. Am. Proc., 35.: 134–140.CrossRefGoogle Scholar
  83. Edgington, D. N., J. A. Robbins, and Carttunen. (1974). The distribution of Pb-210 and stable lead in Lake Michigan sediments. Argonne Natl. Lab. Rept., ANL-8060, 3.: 63–76.Google Scholar
  84. Edgington, D. H., and J. A. Robbins. (1976). Patterns of deposition of natural and fallout radionuclides in the sediments of Lake Michigan and their relation to limnological processes. Pp. 705–730. In: J. O. Nriagu (ed.), Environmental Biogeochemistry. Vol. 2. Ann Arbor Sci. Publ., Ann Arbor, MI.Google Scholar
  85. Edwards, A. M. C., and P. S. Liss. (1973). Evidence for buffering of dissolved silicon in fresh waters. Nature., 243.: 341–342.CrossRefGoogle Scholar
  86. Emerson, S. (1976). Early diagenesis in anaerobic lake sediments: chemical equilibria in interstitial waters. Geochim. Cosmochim. Acta., 40.: 925–934.CrossRefGoogle Scholar
  87. Evanko, M. A. (1977). Vertical sediment distribution of meiobenthic crustaceans in Lake Erie-Ashtabula, Ohio. (abst.) Proc. 20th Conf. Great Lakes Res.Google Scholar
  88. Fanning, K. A., and M. E. Q. Pilson. (1971). Interstitial silica and pH in marine sediments: some effects of sampling procedure. Science., 173.: 1228–1231.PubMedCrossRefGoogle Scholar
  89. Fournier, R. O. (1973). Silica in thermal waters: laboratory and field investigations. Pp. 122–139. Proc. Int. Symp. Hydrochem. Biochem., Japan, 1970, Washington, D.C.Google Scholar
  90. Francis, C. W., and T. Tamura. (1972). An evaluation of zonal centrifugation as a research tool in soil science. II. Characterization of soil clays. Soil Sci. Soc. Am. Proc., 36.: 372–376.CrossRefGoogle Scholar
  91. Francis, C. W., F. S. Brinkley, and E. A. Bondietti. (1976). Large-scale zonal rotors in soil science. Soil Sci. Soc. Am. Proc., 40.: 785–792.CrossRefGoogle Scholar
  92. Frink, C. R. (1967). Nutrient budget: rational analysis of eutrophication in a Connecticut lake. Environ. Sci. Tech., 1.: 425–428.CrossRefGoogle Scholar
  93. Frink, C. R. (1969). Chemical and mineralogical characteristics of eutrophic lake sediments. Soil Sci. Soc. Am. Proc., 33.: 369–372.CrossRefGoogle Scholar
  94. Fritz, B. (1975). Etude thermodynamique et simulation des reactions entre mineraux et solutions application a la geochimie des alterations et des eux continentales. Universite Louis Pasteur de Strasbourg, Sciences Geologiques Memoire N. 0. 41.Google Scholar
  95. Frye, J. C., and N. F. Shimp. (1973). Major, minor, and trace elements in sediments of Late Pleistocene Lake Saline compared to those in Lake Michigan sediments. III Geol. Survey Environ. Geol. Notes, 60.: 14.Google Scholar
  96. Gad, M., and H. Le Riche. (1966). A method for separating detrital and nondetrital trace elements in reduced sediments. Geochim. Cosmochim. Acta., 30.: 841–846.CrossRefGoogle Scholar
  97. Gahler, A. R. (1969). Sediment-water nutrient interchange. In: Eutrophication Biostimulation Assessment Workshop. U. of California, Berkeley, CA.Google Scholar
  98. Garrels, R. M. (1967). Genesis of some ground waters from igneous rocks. In: P. H. Abelson (ed.), Researches in Geochemistry. John Wiley, New York, NY.Google Scholar
  99. Garrels, R. M., and C. L. Christ. (1965). Solutions., Minerals and Equilibria. Harper and Row, New York, NY.Google Scholar
  100. Garrels, R. M., and F. T. Mackenzie. (1967). Origin of the chemical compositions of some springs and lakes. In: R. F. Gould (ed.), Equilibrium Concepts in Natural Water Systems. Am. Chem. Soc., Adv. in Chem. Ser. 67.: 222–242.Google Scholar
  101. Gibbs, R. J. (1967). The Geochemistry of the Amazon River System: Part I. The factors that control the salinity and composition and concentration of the suspended solids. Geol. Soc. Am. Bull., 78.: 1203–1232.CrossRefGoogle Scholar
  102. Gibbs, R. J. (1977). Transport phases of transition metals in the Amazon and Yukon Rivers. Geol. Soc. Am. Bull., 88.: 829–843.CrossRefGoogle Scholar
  103. Goedert, W. J. (1973). Cation equilibria in soils of Rio Grand do Sul, Brazil. Ph.D. Thesis, Univ. Wisconsin.Google Scholar
  104. Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens, and R. A. Berner. (1977). Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: report of the FOAM group. Am. J. Sci., 277.: 193–237.Google Scholar
  105. Gorham, E., and D. J. Swaine. (1965). The influence of oxidizing and reducing conditions upon the distribution of some elements in lake sediments. Limnol. Oceanogr., 10.: 268–279.CrossRefGoogle Scholar
  106. Graf, D. L. (1960). Geochemistry of carbonate sediments and sedimentary carbonate rocks; part I. Carbonate mineralogy-carbonate sediments. Ill. Geol. Surv. Circ., 39.: 297.Google Scholar
  107. Griffin, G. M. (1962). Regional clay-mineral facies: products of weathering intensity and current distribution in the northeastern Gulf of Mexico. Geol. Soc. Am. Bull., 73.: 737–767.CrossRefGoogle Scholar
  108. Griffiths, J. C. (1967). Scientific Method of Analysis of Sediments. McGraw-Hill, New York, NY.Google Scholar
  109. Grim, R. E. (1968). Clay Mineralogy. 2nd ed. McGraw-Hill, New York, NY.Google Scholar
  110. Gross, D. L., J. A. Lineback, N. F. Shimp, and W. A. White. (1972). Composition of Pleistocene sediments in southern Lake Michigan, U.S.A. 24th Int. Geol. Cong., 8.: 215–222.Google Scholar
  111. Guinasso, N. J., Jr., and D. R. Shink. (1975). Quantitative estimates of biological mixing rates in abyssal sediments. J. Geophys. Res., 80.: 3032–3043.CrossRefGoogle Scholar
  112. Hahn, H. H., and W. Stumm. (1970). The role of coagulation in natural waters. Am. J. Sci., 268.: 354–368.CrossRefGoogle Scholar
  113. Halma, G. (1969a). A simple and rapid method to obtain a linear density gradient. Clay Min., 8.: 47–57.CrossRefGoogle Scholar
  114. Halma, G. (1969b). The separation of clay mineral fractions with linear heavy liquid density gradient columns. Clay Min., 8.: 59–69.CrossRefGoogle Scholar
  115. Harbaugh, J. W., and D. F. Merriam. (1968). Computer Applications in Stratigraphic Analysis. John Wiley, New York, NY.Google Scholar
  116. Harward, M. E., D. D. Carstea, and A. H. Sayegh. (1969). Properties of vermiculites and smectites: expansion and collapse. Clays Clay Min., 16.: 437–447.CrossRefGoogle Scholar
  117. Hecky, R. E. (1971). The paleolimnology of the alkaline, saline lakes on the Mount Meru lahar. Ph.D. Thesis, Duke University.Google Scholar
  118. Hecky, R. E., and P. Kilham. (1973). Diatoms in alkaline, saline lakes: ecology and geochemical implications. Limnol. Oceanogr., 18.: 53–71.CrossRefGoogle Scholar
  119. Heezen, B. C., et al. (1973). Initial Reports of the Deep Sea Drilling Project. Washington (U.S. Govt. Printing Office), 20. 958 pp.Google Scholar
  120. Hem, J. D. (1977). Reactions of metal ions at surfaces of hydrous iron oxide. Geochim. Cosmochim. Acta., 41.: 527–538.CrossRefGoogle Scholar
  121. Hem, J. D., and C. J. Lind. (1974). Kaolinite synthesis at 25°C. Science., 184.: 1171–1173.PubMedCrossRefGoogle Scholar
  122. Hesslein, R. H. (1976). An in situ. sampler for close interval pore water studies. Limnol. Oceanogr., 21.: 912–914.CrossRefGoogle Scholar
  123. Holdren, G. C. (1974). Measurement of sediment interstitial phosphorus release from intact sediment cores. M.S. Thesis, Univ. of Wisconsin.Google Scholar
  124. Holdren, G. R., Jr., O. P. Bricker, III, and G. Matisoff. (1975). A model for the control of dissolved manganese in the interstitial waters of Chesapeake Bay. In: T. M. Church (ed.), Marine Chemistry in the Coastal Environment. Am. Chem. Soc., Symposium Ser., 18.: 364–381.Google Scholar
  125. Hornbrook, E. H. W., and R. G. Garrett. (1976). Regional geochemical lake sediment survey, east-central Saskatchewan. Geol. Survey Canada Paper. 75–41. 20 pp.Google Scholar
  126. Hough, J. L. (1963). The prehistoric Great Lakes of North America. Am. Sci., 51.: 84–109.Google Scholar
  127. Hutchinson, G. E. (1957). A Treatise on Limnology. Vol. I. Geography, Physics, and Chemistry. John Wiley, New York, NY.Google Scholar
  128. Hutchinson, G. E. (1969). Eutrophication, past and present. Pp. 17–28. In: Eutrophication: Causes., Consequences., Correctives. Natl. Acad. Sci. Symposium.Google Scholar
  129. Hutchinson, G. E., and A. Wollack. (1940). Studies on Connecticut lake sediments: II. Chemical analysis of a core from Linsley Pond, North Branford. Am. J. Sci., 238.: 493–517.CrossRefGoogle Scholar
  130. Jackson, M. L. (1974). Soil Chemical Analysis Advanced Course. 2nd ed. Madison, WI (published by the author). 895 pp.Google Scholar
  131. Jenne, E. A. (1968). Controls on Mn, Fe, Co, Ni, Cu, and Zn concentrations in soils and water: the significant role of hydrous Mn and Fe Oxides. In: Trace Inorganics in Water. Am. Chem. Soc., Adv. in Chem. Ser., 73.: 337–387.Google Scholar
  132. Jenne, E. A. (1977). Trace element sorption by sediments and soils-sites and processes. Pp. 425–553. In: W. Chappell and K. Peterson (eds.), Molybdenum in the Environment. Marcel-Dekker, New York, NY.Google Scholar
  133. Jenne, E. A., and S. N. Luoma. (1977). Forms of trace elements in soils, sediments, and associated waters: an overview of their determination and biological availability. Biological Implications of Metals in the Environment. 15th Life Sciences Symposium, Hanford, WA. 74 pp.Google Scholar
  134. Johansen, K. A., and J. A. Robbins. (1977). Fallout cesium-137 in sediments of southern Lake Huron and Saginaw Bay. (abst.) Proc. 20th Conf. Great Lakes Res.Google Scholar
  135. Johns, W. D., R. E. Grim, and W. F. Bradley. (1954). Quantitative estimations of clay minerals by diffraction methods. J. Sed. Petrol., 24.: 242–251.Google Scholar
  136. Jones, B. F., (1966). Geochemical evolution of closed basin water in the western Great Basin. In: J. L. Rau (ed.), Second Symposium on Salt. Northern Ohio Geological Society, 1.: 181–200.Google Scholar
  137. Jones, B. F., S. L. Rettig, and H. P. Eugster. (1967). Silica in alkaline brines. Science., 158.: 1310–1314.PubMedCrossRefGoogle Scholar
  138. Jones, B. F., V. C. Kennedy, and G. W. Zellweger. (1974). Comparison of observed and calculated concentrations of dissolved Al and Fe in stream water. Water Resour. Res., 10.: 791–793.CrossRefGoogle Scholar
  139. Jones, B. F., H. P. Eugster, and S. L. Rettig. (1977). Hydrochemistry of the Lake Magadi basin, Kenya. Geochim. Cosmochim. Acta., 41.: 53–72.CrossRefGoogle Scholar
  140. Kalil, E. K., and M. Goldhaber. (1973). A sediment squeezer for removal of pore waters without air contact. J. Sed. Petrol., 43.: 553–557.Google Scholar
  141. Kastner, M., J. B. Keene, and J. M. Gieskes. (1977). Diagenesis of siliceous oozes. I. Chemical controls on the rate of opal-A to opal-CT transformation-an experimental study. Geochim. Cosmochim. Acta., 41.: 1041–1060.CrossRefGoogle Scholar
  142. Kato, K. (1969). Behavior of dissolved silica in connection with oxidation-reduction cycle in lake water. Geochem. J., 3.: 87–97.CrossRefGoogle Scholar
  143. Kemp, A. L. W., T. W. Anderson, R. L. Thomas, and A. Mudrochova. (1974). Sedimentation rates and recent sediment history of Lakes Ontario, Erie and Huron. J. Sed. Petrol., 44.: 207–218.Google Scholar
  144. Kemp, A. L. W., and C. I. Dell. (1975). The geochemistry and mineralogy of Lakes Ontario and Erie bluffs, sediments. Pp. 50–58. In: Proc. 3rd Ann. Conf. Environ. Earth Sci. Res. Rept. Ser. 20. Dept. Geol. Sci. Brock Univ., St. Catherines, Ont.Google Scholar
  145. Kemp, A. L. W., and C. I. Dell. (1976). A preliminary comparison of the composition of bluffs and sediments from Lakes Ontario and Erie. Can. J. Earth Sci., 13.: 1070–1081.CrossRefGoogle Scholar
  146. Kemp, A. L. W., and R. L. Thomas. (1976). Cultural impact on the geochemistry of the sediments of Lakes Ontario, Erie and Huron. Geosci. Can., 3.: 191–207.Google Scholar
  147. Kennedy, S. K., and N. D. Smith. (1977). The relationship between carbonate mineralogy and grain size in two alpine lakes. J. Sed. Petrol., 47.: 411–418.Google Scholar
  148. Kilham, P. (1971). A hypothesis concerning silica and freshwater planktonic diatoms. Limnol. Oceanogr., 16.: 10–18.CrossRefGoogle Scholar
  149. Kilham, P., and R. E. Hecky. (1973). Fluoride: geochemical and ecological significance in East African waters and sediments. Limnol. Oceanogr., 6.: 932–945.CrossRefGoogle Scholar
  150. Kindle, E. M. (1929). A comparative study of different types of thermal stratification in lakes and their influence on the formation of marl. J. Geol., 37.: 150–157.CrossRefGoogle Scholar
  151. Kinniburgh, D. G. (1974). Cation adsorption by hydrous metal oxides. Ph.D. thesis, Univ. Wisconsin.Google Scholar
  152. Kittrick, J. A. (1970). Precipitation of kaolinite at 25°C and 1 atm. Clays Clay Min., 18.: 261–267.CrossRefGoogle Scholar
  153. Kjensmo, J. (1967). The development and some main features of “iron-meromictic” soft water lakes. Arch. Hydrobiol., Suppl. Bd., 32.: 137–312.Google Scholar
  154. Kjensmo, J. (1968). Late and post-glacial sediments in the small meromictic Lake Svinsjoen. Arch. Hydrobiol., 65.: 125–141.Google Scholar
  155. Knebel, H. J., J. C. Kelly, and J. T. Whetten. (1968). Clay minerals of the Columbia River. A qualitative, quantitative, and statistical evaluation. J. Sed. Petrol., 38.: 600611.Google Scholar
  156. Kodama, H., J. A. McKeague, R. J. Tremblay, J. R. Gosse-lin, and M. G. Townsend. (1977). Characterization of iron oxide compounds in soils by Mossbauer and other methods. Can. J. Earth Sci., 14.: 1–15.CrossRefGoogle Scholar
  157. Koenings, J. P. (1976). In situ. experiments on the dissolved and colloidal state of iron in an acid bog lake. Limnol. Oceanogr., 21.: 674–683.Google Scholar
  158. Koenings, J. P., and F. F. Hooper. (1976). The influence of colloidal organic matter on iron and iron-phosphorus cycling in an acid bog lake. Limnol. Oceanogr., 21.: 684–696.CrossRefGoogle Scholar
  159. Koide, M., K. W. Bruland, and E. D. Goldberg. (1973). Th228/Th-232 and Pb-210 geochronologies in marine and lake sediments. Geochim. Cosmochim. Acta., 37.: 1171–1184.CrossRefGoogle Scholar
  160. Kozhov, M. (1963). Lake Baikal and its Life. Biol. Mon. X I. Junk Publications, The Hague.Google Scholar
  161. Kramer, J. R. (1967). Equilibrium models and composition of the Great Lakes. In: R. F. Gould (ed.), Equilibrium Concepts in Natural Water Systems. Am. Chem. Soc. Adv. in Chem. Ser. 67.: 243–254.Google Scholar
  162. Krauskopf, K. B. (1957). Separation of manganese from iron in sedimentary processes. Geochim. Cosmochim. Acta., 12.: 61–84.CrossRefGoogle Scholar
  163. Krenkel, P. A. (ed.). (1975). Heavy Metals in the Aquatic Environment. Pergamon Press, New York, NY.Google Scholar
  164. Krezoski, J. R., and J. A. Robbins. (1977). Radioactivity in sediments of the Great Lakes: post-depositional redistribution by deposit-feeding organisms. (abst.) Proc. 20th. Conf. Great Lakes Res.Google Scholar
  165. Krishniswami, L. D., J. M. Martin, and M. Meybeck. (1971). Geochronology of lake sediments. Earth Planet. Sci. Lett., 11.: 407–411.CrossRefGoogle Scholar
  166. Lagerwerff, J. V. (1964). Extraction of clay-water systems. Soil Sci. Soc. Am. Proc., 28.: 502–506.CrossRefGoogle Scholar
  167. Lahann, R. W. (1976). The effect of trace metal extraction procedures on clay minerals. J. Environ. Sci. Health., 11.: 639–662.CrossRefGoogle Scholar
  168. Larkin, P. A. (1964). Canadian Lakes. Verh. Int. Verein. Limnol., 15.: 76–90.Google Scholar
  169. Lasaga, A. C. (1977). The modelling of kinetics and transport phenomena in early diagenesis. Trans. Am. Geophys. Union., 58.: 516.Google Scholar
  170. Lasaga, A. C., and H. D. Holland. (1976). Mathematical aspects of non-steady-state diagenesis. Geochim. Cosmochim. Acta., 40.: 257–266.CrossRefGoogle Scholar
  171. Leckie, J. O. (1969). Interaction of calcium phosphate at calcite surfaces. Ph.D. thesis, Harvard Univ.Google Scholar
  172. Lerman, A. (1977). Migrational processes and chemical reactions in interstitial waters. In: E. D. Goldberg, I. N. McCave, J. J. O’Brien, and J. H. Steel (eds.), The Sea., 6.: 695–738.Google Scholar
  173. Lerman, A., and G. J. Brunskill. (1971). Migration of major constituents from lake sediments into lake water and its bearing on lake water composition. Limnol. Oceanogr., 16.: 880–890.CrossRefGoogle Scholar
  174. Lerman, A., and C. W. Childs. (1973). Metal-organic complexes in natural waters: control of distribution by thermodynamic, kinetic, and physical factors. Pp. 201–236. In: P. C. Singer (ed.), Trace Metals and Metal-Organic Interactions in Natural Waters. Ann Arbor Science Publ., Ann Arbor, MI.Google Scholar
  175. Lewin, J. C. (1969). The dissolution of silica from diatom walls. Geochim. Cosmochim. Acta., 21.: 182–192.CrossRefGoogle Scholar
  176. Livingstone, D. A., and J. C. Boykin. (1962). Distribution of phosphorus in Linsley Pond mud. Limnol. Oceanogr., 7.: 57–62.CrossRefGoogle Scholar
  177. Ludlam, S. (1967). Sedimentation in Cayuga Lake, New York. Limnol. Oceanogr., 12.: 618–632.CrossRefGoogle Scholar
  178. Lusczynski, N. J. (1961). Filter-press method of extracting water samples for chloride analysis. U.S.G.S. Water Supply Paper 1544-A. 8 pp.Google Scholar
  179. Mackereth, F. J. H. (1965). Chemical investigations of lake sediments and their interpretations. Proc. Royal Soc., 161.: 295–309.CrossRefGoogle Scholar
  180. Mackereth, F. J. H. (1966). Some chemical observations on postglacial lake sediments. Phil. Trans. Roy. Soc. London., 258.: 165–213.Google Scholar
  181. Maher, L. J., Jr. (1977). Palynological studies in the western arm of Lake Superior: Quat. Res., 7.: 14–44.CrossRefGoogle Scholar
  182. Mangelsdorf, P. C., Jr., T. R. S. Wilson and E. Daniell. (1969). Potassium enrichments in interstitial waters of marine sediments. Science. 165.: 171.PubMedCrossRefGoogle Scholar
  183. Manheim, F. T. (1965). Manganese-Iron Accumulations in the Shallow Marine Environment. Univ. Rhode Island: Narragansett Mar. Lab. Occ. Publ.Google Scholar
  184. Manheim, F. T. (1966). A hydraulic squeezer for obtaining interstitial water from consolidated and unconsolidated sediments. U.S.G.S. Prof. Paper 550-C. C256 - C261.Google Scholar
  185. Manheim, F. T. (1967). Evidence for submarine discharge of water on the Atlantic continental slope of the southern United States, and suggestions for further research. Trans. New York Acad. Sci., Ser. II. 29.: 839–853.CrossRefGoogle Scholar
  186. Manheim, F. T. (1976). Interstitial waters of marine sediments. Pp. 115–186. In: J. P. Riley and R. Chester (eds.), Chemical Oceanography. 2nd ed., Vol. 6.Google Scholar
  187. Mann, J. R., Jr. (1951). The sediments of Lake Elsinore, Riverside County, California. J. Sed. Petrol., 21.: 151–161.Google Scholar
  188. Martens, C. S. (1974). A method for measuring dissolved gases in pore waters. Limnol. Oceanogr., 19.: 525–530.CrossRefGoogle Scholar
  189. Matisoff, G., O. P. Bricker, III, G. R. Holdren, Jr., and P. Kaerk. (1975). Spatial and temporal variations in the interstitial water chemistry of Chesapeake Bay sediments. In: T. M. Church (ed.), Marine Chemistry in the Coastal Environment. Am. Chem. Soc., Symposium Ser. 18.: 343–363.Google Scholar
  190. McCall, P. L., and J. B. Fisher. (1977). Vertical transport of sediment solids by Tubifex tubifex. (Oligochaeta). (abst.) Proc. 20th Conf. Great Lakes Res.Google Scholar
  191. McKeague, J. A. (1967). An evaluation of 0.1M phyrophosphate and phrophosphate-dithionite in comparison with oxalate as extractants of the accumulation products in podzols and some other soils. Can. J. Soil Sci., 47.: 95–99.CrossRefGoogle Scholar
  192. McKeague, J. A. (1968). Humic-fulvic acid ratio, Al, Fe, and C in pyrophosphate extracts as criteria of A and B horizons. Can. J. Soil Sci., 48.: 27–35.CrossRefGoogle Scholar
  193. McKeague, J. A., and J. H. Day. (1966). Dithionite and oxalate-extractable Fe and Al as aids in differentiating various classes of soils. Can. J. Soil Sci., 46.: 13–22.CrossRefGoogle Scholar
  194. McKeague, J. A., J. E. Brydon, and N. M. Miles. (1971). Differentiation of forms of extractable iron and aluminum in soils. Soil Sci. Soc. Am. Proc., 35.: 33–38.CrossRefGoogle Scholar
  195. Mehra, O. P., and M. L. Jackson. (1960). Iron oxide removal from soils and clays by a dithionite-citrate system buffered with sodium-bicarbonate. Clays Clay Min., 7.: 317–327.CrossRefGoogle Scholar
  196. Merilainen, J. (1969). Distribution of diatom frustules in recent sediments of some meromictic lakes. Mitt. Int. Ver. Theor. Agnew. Limnol., 17.: 186–192.Google Scholar
  197. Middlebrooks, E. J., D. H. Falkenberg, and T. E. Maloney. (eds.). (1974). Modelling the Eutrophication Process. Ann Arbor Science Publ., Ann Arbor, MI.Google Scholar
  198. Miesch, A. T. (1969). The constant sum problem in geochemistry. In: D. F. Meriam (ed.), Computer Applications in the Earth Sciences. Plenum Press, London.Google Scholar
  199. Milford, H. H., and M. L. Jackson. (1962). Specific surface determination of expansible layer silicates. Science., 135.: 929–930.PubMedCrossRefGoogle Scholar
  200. Milliman, J. D. (1976). Marine Carbonates. Springer-Verlag, New York, NY.Google Scholar
  201. Moore, C. A., and M. L. Silver. (1975). Nutrient transport by sediment-water interaction. Proc. Int. Clay Conf., 1975.: 495–504.Google Scholar
  202. Moore, J. E. (1961). Petrography of northeastern Lake Michigan bottom sediments. J. Sed. Petrol., 3: 402–436.Google Scholar
  203. Mortimer, C. H. (1941). The exchange of dissolved substances between mud and water in lakes. J. Ecol., 29.: 280–329.CrossRefGoogle Scholar
  204. Mortimer, C. H. (1969). Physical factors with bearing on eutrophication in lakes in general and in large lakes in particular. Pp. 340–370. In: Eutrophication: Causes., Consequences., Correcives. Nat’l. Acad. Sci. Symposium.Google Scholar
  205. Mortimer, C. H. (1971). Chemical exchanges between sediments and water in the Great Lakes-speculations on probable regulatory mechanisms. Limnol. Oceanogr., 16.: 387–404.CrossRefGoogle Scholar
  206. Mudroch, A., A. J. Zeman, and Sandilands, R. (1977). Identification of mineral particles in fine grained lacustrine sediments with transmission electron microscope and x-ray dispersive spectroscopy. J. Sed. Petrol., 47.: 244–250.Google Scholar
  207. Müller, G. (1966). Die Sedimentbildung im Bodensee. Naturwissenschaften., 53.: 237–247.CrossRefGoogle Scholar
  208. Müller, G. (1970). High-magnesian calcite and protodolomite in Lake Balaton (Hungary) sediments. Nature Phys. Sci., 226.: 749–750.CrossRefGoogle Scholar
  209. Müller, G. (1971). Aragonite: inorganic precipitation in a freshwater lake. Nature Phys. Sci., 229.: 18.Google Scholar
  210. Müller, G., and U. Forstner. (1973). Recent iron ore formation in Lake Malawi, Africa. Mineral. Deposita., 8.: 278–290.CrossRefGoogle Scholar
  211. Müller, G., and J. Quakernaat. (1969). Diffractometric clay mineral analysis of recent sediments of Lake Constance (central Europe). Contr. Mineral. Petrol., 22.: 268–275.CrossRefGoogle Scholar
  212. Müller, G., G. Trion, and U. Forstner. (1972). Formation and diagenesis of inorganic Ca-Mg carbonates in the lacustrine environment. Naturwissenschaften., 59.: 158–164.CrossRefGoogle Scholar
  213. Murray, R. C. (1956). Recent sediments of three Wisconsin lakes. Geol Soc. Am. Bull., 67.: 883–910.CrossRefGoogle Scholar
  214. Nelson, C. H. (1967). Sediments of Crater Lake, Oregon. Geol. Soc. Am. Bull., 78.: 833–848.CrossRefGoogle Scholar
  215. Nesbitt, H. W. (1974). The study of some mineral-aqueous solution interactions. Ph.D. Thesis, Johns Hopkins Univ.Google Scholar
  216. Norvell, W. A. (1974). Insolubilization of inorganic phosphate by anoxic lake sediment. Soil Sci. Soc. Am. Proc., 38.: 441–445.CrossRefGoogle Scholar
  217. Nozaki, Y., J. K. Cochran, K. K. Turekian, and G. Keller. (1977). Radiocarbon and 210Pb distribution in submersible-taken deep-sea cores from project FAMOUS. Earth Planet. Sci. Lett., 34.: 167–173.CrossRefGoogle Scholar
  218. Nriagu, J. O. (1968). The distribution of iron in lake sedi- ments. Trans. Wis. Acad. Arts Sci., 56.: 153–164.Google Scholar
  219. Nriagu, J. O. (1976). Phosphate-clay mineral relations in soils and sediments. Can. J. Earth Sci., 13.: 717–736.CrossRefGoogle Scholar
  220. Nriagu, J. O., and C. J. Bowser. (1969). The magnetic spherules in sediments of Lake Mendota, Wisconsin. Water Res., 3.: 833–842.CrossRefGoogle Scholar
  221. Nriagu, J. O., and C. I. Dell. (1974). Diagenetic formation of iron phosphates in recent lake sediments. Am. Mineral., 59.: 934–946.Google Scholar
  222. Nussmann, D. G. (1965). Trace elements in the sediments of Lake Superior. Ph.D. thesis, Univ. of Michigan.Google Scholar
  223. Otsuki, A., and R. G. Wetzel. (1972). Coprecipitation of phosphate with carbonates in a marl lake. Limnol. Oceanogr., 17.: 763–767.CrossRefGoogle Scholar
  224. Paddock, R. W. (1975). Chloride transport between sediment and water in Lake Wingra. M. S. Thesis, Univ. Wisconsin.Google Scholar
  225. Parker, J. I., and D. N. Edgington. (1976). Concentration of diatom frustules in Lake Michigan sediment cores. Limnol. Oceanogr., 21.: 887–893.CrossRefGoogle Scholar
  226. Parks, G. A. (1967). Aqueous surface chemistry of oxides and complex oxide minerals. Isoelectric point and zero point of charge. In: R. F. Gould (ed.), Equilibrium Concepts in Natural Water Systems. Am. Chem. Soc., Adv. in Chem. Ser. 67.: 121–161.Google Scholar
  227. Parks, G. A. (1975). Adsorption in the marine environment. Pp. 241–308. In: J. P. Riley and Skirrow (eds.), Chemical Oceanography. 2nd ed., Vol 1.Google Scholar
  228. Pennington, W., R. S. Cambray, and E. M. Fisher. (1973). Observations on lake sediments using fallout 137Cs as a tracer. Nature., 242.: 324–326.PubMedCrossRefGoogle Scholar
  229. Perry, E. A., Jr. (1971). Silicate-sea water equilibria in the ocean system: a discussion. Deep Sea Res., 18.: 921–924.Google Scholar
  230. Petrovic, R. (1976). Rate control in felspar dissolution-II. The protective effect of precipitates: Geochim. Cosmochim. Acta., 40.: 1509–1522.CrossRefGoogle Scholar
  231. Petrovic, R., R. A. Berner, and M. B. Goldhaber. (1976). Rate control in dissolution of alkali feldspars-I. Study of residual feldspar grains by x-ray photoelectron spectroscopy. Geochim. Cosmochim. Acta., 40.: 537–548.CrossRefGoogle Scholar
  232. Pierce, J. W., and F. R. Siegel. (1969). Quantification in clay mineral studies of sediments and sedimentary rocks. J. Sed. Petrol., 39.: 187–193.Google Scholar
  233. Plas, L. van der, and A. C. Tobi. (1965). A chart for judging the reliability of point counting results. Am. J. Sci., 263.: 87–90.CrossRefGoogle Scholar
  234. Portner, C. (1951). Le mecanisme de la precipitation du CaCO3 et la determination de lepaisseur du depot annuel de la vase dans le lac de Neutchatel. Geol. Rundschau., 39.: 212–216.CrossRefGoogle Scholar
  235. Potter, P. E., D. Heling, N. F. Shimp, and W. Van Wie. (1975). Clay mineralogy of modem alluvial muds of the Mississippi River basin. Bull. Centre Reche. PauSNPA., 2.: 353–389.Google Scholar
  236. Prokopovich, N. P. (1973). Iron sulfide concretions from Tulare formation at O’Neill Forebay reservoir, western Merced County, California, Am. Assn. Petrol. Geol., 57.: 12.Google Scholar
  237. Quakernaat, J. (1968). X-ray analyses of clay minerals in some recent fluviatile sediments along the coasts of Central Italy. Publ. Fys-geog. Lab. Univ. Amsterdam., 12.: 105.Google Scholar
  238. Quakernaat, J. (1970). Direct diffractometric quantitative analysis of synthetic clay mineral mixtures with molybdenite as orientation-indicator. J. Sed. Petrol., 40.: 506–513.Google Scholar
  239. Rashid, M. A. (1974). Adsorption of metals on sedimentary and peat humic acids. Chem. Geol., 13:115–123. Reeburgh, W. S. (1967). An improved interstitial water sampler. Limnol. Oceanogr., 12.: 163–165.Google Scholar
  240. Reineck, H. E. (1963). Der Kastengreifer. Natur. Mus., 93.: 103–108.Google Scholar
  241. Richardson, J. L. (1968). Diatoms and lake typology in East and Central Africa. Int. Rev. Geo. Hydrobiol., 53.: 229–338.Google Scholar
  242. Richardson, J. L., and A. E. Richardson. (1972). History of an African Rift Lake and its climatic implications. Ecol. Mon., 42.: 499–534.CrossRefGoogle Scholar
  243. Rickard, D. T. (1975). Kinetics and mechanism of pyrite formation at low temperatures. Am. J. Sci., 275.: 636–652.CrossRefGoogle Scholar
  244. Rittenberg, S. C., K. O. Emery, and W. L. Orr. (1955). Regeneration of nutrients in sediments of marine basins. Deep Sea Res., 3.: 23–45.CrossRefGoogle Scholar
  245. Robbins, J. A., and E. Callender. (1975). Diagenesis of manganese in Lake Michigan sediments. Am. J. Sci., 275.: 512–533.CrossRefGoogle Scholar
  246. Robbins, J. A., and D. N. Edgington. (1975). Determination of recent sedimentation rates in Lake Michigan using Pb-210 and Cs-137. Geochim. Cosmochim Acta., 39.: 285–304.CrossRefGoogle Scholar
  247. Robbins, J. A., and J. Gustinis. (1976). A squeezer for efficient extraction of pore water from small volumes of anoxic sediment. Limnol. Oceanogr., 21.: 905–909.CrossRefGoogle Scholar
  248. Robbins, J. A., J. R. Krezoski, and S. C. Moxley. (1977). Radioactivity in sediments of the Great Lakes: post-depositional redistribution by deposit feeding organisms. Earth Planet. Sci. Lett. 36.: 325–333.CrossRefGoogle Scholar
  249. Rosenbaum, M. S. (1976). Effect of compaction on the pore fluid chemistry of montmorillonite. Clays Clay Min., 24.: 118–121.CrossRefGoogle Scholar
  250. Rossman, R. (1973). Lake Michigan ferromanganese nodules: Ph.D. Thesis, Univ. of Michigan.Google Scholar
  251. Rossman, R., and E. Callender. (1969). Geochemistry of Lake Michigan manganese nodules. Proc. Conf. Great Lakes Res., 12.: 306–316.Google Scholar
  252. Rossman, R., E. Callender, C. J. Bowser. (1972). Inter-element geochemistry of Lake Michigan ferromanganese nodules. Proc. 24th Intl. Geol. Congr., Montreal, Sec., 10.: 336–341.Google Scholar
  253. Round, F. E. (1964). The diatom sequence in lake deposits: some problems of interpretation: Verh. Int. Verein. Limnol., 15.: 1012–1020.Google Scholar
  254. Rowlands, D. L. G., and R. K. Webster. (1971). Precipitation of vaterite in lake water. Nature Phys. Sci., 229.: 158.Google Scholar
  255. Sapozhnikov, D. G., and A. 1. Tsvetkov. (1959). Precipitation of hydrous calcium carbonate on the bottom of Lake Issyk-Kul. (In Russian). Doklady Akad. Nauk. SSSR. 124.: 402–405.Google Scholar
  256. Sayles, F. L., T. R. S. Wilson, D. N. Hume and P. C. Mangelsdorf, Jr. (1973). In situ sampler for marine sedimentary pore waters: evidence for potassium depletion and calcium enrichment. Science., 181.: 154–156.PubMedCrossRefGoogle Scholar
  257. Sayles, F. L., P. C. Mangelsdorf, Jr., T. R. S. Wilson, and D. N. Hume. (1976). A sampler for the in situ. collection of marine sedimentary pore waters. Deep Sea Res., 23.: 259–264.Google Scholar
  258. Scafe, D. W., and G. W. Kunze. (1971). A clay mineral investigation of six cores from the Gulf of Mexico. Marine Geol., 10.: 69–85.CrossRefGoogle Scholar
  259. Schindler, D. W. (1976). Biogeochemical evolution of phosphorus limitation in nutrient-enriched lakes of the Precambrian Shield. In: J. Nriagu (ed.), Environmental Bio-geochemistry. Ann Arbor Sci. Publ., Ann Arbor, MI.Google Scholar
  260. Schink, D. R., and N. L. Guinasso, Jr. (1977). Effects of bioturbation on sediment-seawater interaction. Marine Geol., 23.: 133–154.CrossRefGoogle Scholar
  261. Schöttle, M. (1969). The sediments of the Gnadensee. Arch. Hydrobiol., Suppl Bd., 35.: 255–308.Google Scholar
  262. Schöttle, M., and G. Müller. (1968). Recent carbonate sedimentation in the Gnadensee (Lake Constance) Germany. In: G. Müller and G. M. Friedman (eds.), Recent. Developments in Carbonate Sedimentology in Central. Europe. Springer-Verlag, Berlin.Google Scholar
  263. Sommers, L. E., R. F. Harris, J. D. H. Williams, D. E. Armstrong, and J. K. Syers. (1972). Fractionation of organic phosphorus in lake sediments. Soil Sci. Soc. Am. Proc., 36.: 51–54.CrossRefGoogle Scholar
  264. Sozanski, A. G., and D. S. Cronan. (1976). Environmental differentiation of morphology of ferromanganese oxide concretion in Shebandowan Lakes, Ontario. Limnol. Oceanogr., 21.: 894–898.CrossRefGoogle Scholar
  265. Stankovic, S. (1960). The Balkan Lake Ohrid and its Living World. Biol. Mon. I V. Junk, The Hague.Google Scholar
  266. Stoffers, P., and R. Fischbeck. (1974). Monohydrocalcite in the sediments of Lake Kivu (East Africa). Sedimentology., 21.: 163–170.CrossRefGoogle Scholar
  267. Stumm, W., and J. J. Morgan, (1970). Aquatic Chemistry. Wiley-Interscience, New York, NY.Google Scholar
  268. Subramanian, V. (1975). A note on the effect of chemical treatments in mineralogical studies of sediments. Experienta., 31.: 12–13.CrossRefGoogle Scholar
  269. Sutherland, J. C. (1969). Geochemical systems in Onondaga Lake (central New York state) compared with the Great Lakes Pp. 357–363. Proc. 12th Conf. Great Lakes Res.Google Scholar
  270. Sutherland, J. C. (1970). Silicate mineral stability and mineral equilibria in the Great Lakes. Environ. Sci. Technol., 4.: 826–833.CrossRefGoogle Scholar
  271. Sutherland, J. C., J. R. Kramer, L. Nichols, and T. Kurtz. (1966). Mineral-water equilibria, Great Lakes: silica and phosphorus. Univ. of Michigan Pub. 15.: 439–445.Google Scholar
  272. Swain, F. M. (1965). Geochemistry of some quaternary lake sediments of North America. Pp. 765–781. In: H. E. Wright and D. G. Frey (eds.), The Quaternary of the United States. Princeton Univ. Press, Princeton, NJ.Google Scholar
  273. Swain, F. M. (1966). Bottom sediments of Lake Nicaragua and Lake Managua, Western Nicaragua. J. Sed. Petrol. 36.: 522–540.Google Scholar
  274. Swain, F. M. (1970). Non-Marine Organic Geochemistry. Cambridge Univ. Press, Cambridge.Google Scholar
  275. Swain, F. M., and N. Prokopovich. (1957). Stratigraphy of upper part of sediments of Silver Bay area, Lake Superior. Geol. Soc. Am. Bull., 68.: 527–542.CrossRefGoogle Scholar
  276. Sweeney, R. E., and I. R. Kaplan. (1973). Pyrite framboid formation. Laboratory synthesis and marine sediments. Econ. Geol., 68.: 618–634.CrossRefGoogle Scholar
  277. Syers, J. K., R. F. Harris, and D. E. Armstrong. (1973). Phosphate chemistry in lake sediments. J. Environ. Qual., 2.: 1–14.CrossRefGoogle Scholar
  278. Terlecky, P. M., Jr. (1974). The origin of a late Pleistocene and Holocene marl deposit. J. Sed. Petrol., 44.: 456–465.Google Scholar
  279. Thienemann, A. (1925). Die Binnengerwasser mitteleuropas. Binnengewasser I. E. Schweizerbartsche Verlagsbuchhandlung, Stuttgart.Google Scholar
  280. Thomas, R. L. (1969a). A note on the relationship of grain size, clay content, quartz and organic carbon in some Lake Erie and Lake Ontario sediments. J. Sed. Petrol., 42.: 66–84.Google Scholar
  281. Thomas, R. L. (1969b). The qualitative distribution of feldspars in surficial bottom sediments from Lake Ontario. Pp. 364–379. Proc. 12th Conf Great Lakes Res.Google Scholar
  282. Thomas, R. L., A. L. W. Kemp, and C. F. M. Lewis. (1972). Distribution, composition, and characteristics of the surficial sediments of Lake Ontario. J. Sed. Petrol., 42.: 66–84.Google Scholar
  283. Thomas, R. L., A. L. W. Kemp, and C. F. M. Lewis. (1973). The surficial sediments of Lake Huron. Can. J. Earth Sci., 10.: 226–271.CrossRefGoogle Scholar
  284. Thomas, R. L., L. M. Jaquet, A. L. W. Kemp, and C. F. M. Lewis. (1976). The surficial sediments of Lake Erie. J. Fish. Res. Board Can., 33.: 385–403.CrossRefGoogle Scholar
  285. Till, R. (1974). Statistical Methods for the Earth Scientist. John Wiley, New York, NY.Google Scholar
  286. Towe, K., and W. Bradley. (1967). Mineralogical constitution of colloidal “hydrous ferric oxides.” J. Colloid. Sci., 24.: 384–392.CrossRefGoogle Scholar
  287. Truesdell, A. H., and B. F. Jones. (1974). WATEQ, A computer program for calculating chemical equilibria of natural waters. U.S.G.S. J. Res., 2.: 238–248.Google Scholar
  288. Twenhofel, W. H. (1933). The physical and chemical characteristics of the sediments of Lake Mendota, a fresh water lake of Wisconsin. J. Sed. Petrol., 3.: 68–76.Google Scholar
  289. Twenhofel, W. H. (1937). The bottom sediments of Lake Monona, a fresh-water lake of southern Wisconsin. J. Sed. Petrol., 7.: 67–77.Google Scholar
  290. Twenhofel, W. H., and W. A. Broughton. (1939). The sediments of Crystal Lake, an oligotrophic lake in Vilas County, Wisconsin. Am. J. Sci., 237.: 231–252.CrossRefGoogle Scholar
  291. Twenhofel, W. H., and V. E. McKelvey. (1939). The sediments of Devils Lake, a eutrophic-oligotrophic lake of southern Wisconsin. J. Sed. Petrol., 9.: 105–121.Google Scholar
  292. Twenhofel, W. H., and V. E. McKelvey. (1941). Sediments of fresh water lakes. Am. Assn. Petrol. Geol., 25.: 826–849.Google Scholar
  293. Ugolini, F. C., and M. L. Jackson. (1977). Weathering and mineral synthesis in antarctic soils. Proc. Internat. Sympos. on Antarctic Geol. Geophys. Madison. WI.Google Scholar
  294. Vallentyne, J. R. (1961). On the rate of formation of black spheres in recent sediments. Verh. Int. Verein. Limnol., 14.: 291–295.Google Scholar
  295. Vallentyne, J. R. (1963). Isolation of pyrite spherules from recent sediments. Limnol. Oceanogr., 8.: 16–30.CrossRefGoogle Scholar
  296. Van Olphen, H. (1963). An Introduction to Colloid Chemistry. Wiley-Interscience, New York, NY.Google Scholar
  297. Von der Borch, C. C., D. E. Lock, and D. Schwebel. (1975). Ground-water formation of dolomite in the Coorong region of South Australia. Geology., 3.: 283–285.CrossRefGoogle Scholar
  298. Von der Borch, C. C. (1976). Stratigraphy and formation of Holocene dolomitic carbonate deposits of the Coorong area, South Australia. J. Sed. Petrol., 46.: 952–966.Google Scholar
  299. Warry, N. D., and J. R. Kramer. (1976). Some factors affecting the synthesis of cryptocrystalline strengite from an amorphous phosphate complex. Can. Min., 14.: 40–46.Google Scholar
  300. Weaver, C. E., and L. D. Pollard. (1973). The Chemistry of Clay Minerals. Elsevier, New York, NY.Google Scholar
  301. Wetzel, R. G. (1966). Productivity and nutrient relationships in marl lakes of northern Indiana. Verh. Int. Verein. Limnol., 16.: 321–332.Google Scholar
  302. Wetzel, R. G. (1975). Limnology. W. B. Saunders, Philadelphia, PA.Google Scholar
  303. Williams, J. D. H., and T. Mayer. (1972). Effects of sediment diagenesis and regeneration of phosphorus with special reference to Lakes Erie and Ontario. In: H. E. Allen and J. R. Kramer (eds.), Nutrients in Natural Waters. Wiley Interscience, New York, NY.Google Scholar
  304. Williams, J. D. H., J. K. Syers, R. F. Harris, and D. E. Armstrong. (1971a). Fractionation of inorganic phosphate in calcareous lake sediments. Soil Sci. Soc. Am. Proc., 35.: 250–255.CrossRefGoogle Scholar
  305. Williams, J. D. H., J. K. Syers, D. E. Armstrong, and R. F. Harris. (1971b). Characterization of inorganic phosphate in noncalcareous lake sediments. Soil Sci. Soc. Am. Proc., 35.: 556–561.CrossRefGoogle Scholar
  306. Williams, J. D. H., J. K. Syers, S. S. Shukla, R. F. Harris, and D. E. Armstrong. (1971c). Levels of inorganic and total phosphorus in lake sediments as related to other sediment parameters. Environ. Sci. Tech. 5.: 1113–1120.CrossRefGoogle Scholar
  307. Williams, J. D. H., T. P. Murphy, and T. Mayer. (1976). Rates of accumulation of phosphorus forms in Lake Erie sediments. J. Fish. Res. Board Can., 33.: 430–439.CrossRefGoogle Scholar
  308. Winter, T. C. (1977). Classification of the hydrologic settings of lakes in the north central United States. Water Res. Res., 13.: 753–767.CrossRefGoogle Scholar
  309. Winter, T. C., and H. E. Wright, Jr. (1977). Paleohydrologic phenomena recorded by lake sediments. Trans. Am. Geophys. Union., 58.: 188–196.CrossRefGoogle Scholar
  310. Wollast, R., F. T. Mackenzie, and O. P. Bricker. (1968). Experimental precipitation and genesis of sepiolite at earth-surface conditions. Am. Mineral., 35.: 1645–1662.Google Scholar
  311. Wright, H. E., Jr. (1972). Quaternary history of Minnesota. In: P. K. Sims and G. B. Moore (eds.), Geology of Minnesota. Minnesota Geol. Survey 515–547.Google Scholar
  312. Zen, E-an. (1972). Gibbs free energy, enthalpy, and entropy of ten rock forming minerals: calculations, discrepancies, implications. Am. Mineral., 57.: 524–553.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • Blair F. Jones
  • Carl J. Bowser

There are no affiliations available

Personalised recommendations