Lakes pp 153-177 | Cite as

Radionuclide Limnochronology

  • S. Krishnaswami
  • D. Lal


Radioactive nuclides present in the environment have proved very valuable for the introduction of time parameter in a variety of earth science problems. Their utility in the field of oceanography, meteorology, hydrology, and related fields has been well documented (Eriksson, 1962; Lal, 1963; Sheppard, 1963; Broecker, 1963, 1965; Lal and Suess, 1968; Lal, 1969; Machta, 1974; Fitch et al., 1974; Goldberg and Bruland, 1974; Oeschger and Gugelmann, 1974; Burton, 1976; Ku, 1976; Turekian and Cochran, 1977). The application of radionuclides for deciphering the time element in limnological processes is still in its infancy The past decade has witnessed a surge of activity in this field, especially in limnochronology and gas exchange across the water-air interface. In this chapter we will discuss the application of radionuclides for determining the chronology of sediments and other deposits forming from contemporary lakes and those collected from glacial and “fossil” lakes. The sedimentary record of contemporary lakes contains information on the recent past of the environment, whereas those from the glacial and “fossil” lakes can be used to reconstruct the long-term history of the earth’s past, especially its climatic changes.


Lake Sediment Activity Ratio Sediment Accumulation Rate Constant Of234 Daughter Nuclide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aller, R. C. (1977). The influence of micro benthos on chemical diagenesis of marine sediments. Ph.D. thesis, Yale Univ. 600 pp.Google Scholar
  2. Aller, R. C., and J. K. Cochran. (1976). 2ß lh/2ß8U disequilibrium in nearshore sediment: particle reworking and diagentic time scales. Earth Planet Sci. Lett., 29: 37–50.Google Scholar
  3. Ambach, W., and H. Eisner. (1968). Pb-210 methode zur von eis eines alpinen gletschers. Acta Phys. Aust., 27: 271–274.Google Scholar
  4. Barbetti, M., and M. McElhinny. (1972). Evidence of a geomagnetic excursion 30,000 yr BP, Nature (London), 239: 327–330.Google Scholar
  5. Barnes, J. W., E. J. Lang, and H. A. Potratz. (1956). Ratio of ionium to uranium in coral limestone. Science, 124: 175–176.PubMedGoogle Scholar
  6. Benninger, L. K., D. M. Lewis, and K. K. Turekian. (1975). The use of natural 210Pb as a heavy metal tracer in riverestuarine system. pp. 201–210. In: T. M. Church (ed.), Marine Chemistry in the Coastal Environment. Am. Chem. Soc. Symp. Ser. Vol. 18.Google Scholar
  7. Berger, W. H., and G. R. Heath. (1968). Vertical mixing in pelagic sediments. J. Mar. Res., 26 (2): 134–143.Google Scholar
  8. Bertine, K. K., L. H. Chan, and K. K. Turekian. (1970). Uranium determination in deep sea sediments and natural waters using fission-tracks. Geochim. Cosmochim. Acta, 34: 641–648.Google Scholar
  9. Bhandari, N., D. Lal, and Rama. (1966). Stratospheric circulation studies based on natural and artificial radioactive tracer elements. Tellus, XVIIL: 391–406.Google Scholar
  10. Bhat, S. G., and S. Krishnaswami. (1969). Isotopes of U and Ra in Indian rivers. Proc. Ind. Acad. Sci.. 70A: 1–17.Google Scholar
  11. Blanchard, R. L. (1%3). Uranium decay series disequilibrium in age determination of marine calcium carbonates. Ph.D. Thesis, Washington University. 175 pp.Google Scholar
  12. Bonnyman, J., and J. Molina-Ramos. (1971). Concentrations of 210 Pb in Rainwater in Australia during the Years 1964–70. Tech. Rep. CXRL/7, Commonwealth X-ray and Radium Laboratory, Melbourne, Australia.Google Scholar
  13. Borole, D. V., S. Krishnaswami, and B. L. K. Somayajulu. (1977). Investigations on dissolved uranium, silicon and on particulate trace elements in estuaries. Estuarine Coastal Mar. Sci., 5: 743–754.Google Scholar
  14. Bortleson, G. C., and G. F. Lee. (1972). Recent sedimentary history of Lake Mendota, Winsonsin. Environ. Sci. Technol., 6: 799–808.Google Scholar
  15. Bowler, J. M. (1970). Late Quarternary environments-A study of lakes and associated sediments in South Eastern Australia. Ph.D. Thesis, Australian National University. 340 pp.Google Scholar
  16. Broecker, W. S. (1963). Radioisotopes and large-scale oceanic mixing. Pp. 88–108. In: M. N. Hill (ed.), The Sea, Ideas and Observations on Progress in the Study of the Sea. Vol. 2. Interscience Publishers.Google Scholar
  17. Broecker, W. S. (1965). Isotope geochemistry and the Pleistocene climactic record. Pp. 737–753. In: H. E. Wright, Jr., and D. G. Grey (eds.), The Quarternary of the United States. Princeton University Press, Princeton, NJ.Google Scholar
  18. Broecker, W. S., and A. Kaufman. (1%5). Radiocarbon chronology of Lake Lahontan and Lake Bonneville II. Bull. Geol. Soc. Amer., 76: 537–566.Google Scholar
  19. Broecker, W. S., and A. Walton. (1959). The geochemistry of C-14 in freshwater systems. Geochim. Cosmochim. Acta, 16: 15–38.Google Scholar
  20. Broecker, W. S., and J. Van Donk. (1970). Isolation changes, ice volumes and 180 record in deep sea cores. Rev. Geophys. Space Phys., 8: 169–198.Google Scholar
  21. Broecker, W. S., Y. H. Li, and J. Cromwell. (1967). Radium-226 and radon-222 concentrations in the Atlantic and Pacific Oceans. Science, 158: 1307–1310.PubMedGoogle Scholar
  22. Brugam, R. B. (1975). The human disturbance history of Linsley Pond, North Branford, Connecticut. Ph.D. Thesis, Yale University. 184 pp.Google Scholar
  23. Bruland, K. W. (1974). Pb-210 geochronology in the coastal marine environment. Ph.D. Thesis, Univ. Calif. San Diego, La Jolla, CA. 106 pp.Google Scholar
  24. Bruland, K. W., M. Koide, C. Bowser, J. Maher, and E. D. Goldberg. (1975). 210Pb and pollen geochronologies on Lake Superior sediments. Quat. Res., 5: 89–98.Google Scholar
  25. Burton, W. M., and N. G. Stewart. (1960). Use of long lived natural radioactivity as an atmospheric tracer. Nature, 186: 584–589.PubMedGoogle Scholar
  26. Burton, J. D. (1976). Radioactivity in marine environment. Pp. 91–191. In: J. P. Riley and G. Skirrow (eds.), Chemical Oceanography. Vol. 3. Academic Press, London.Google Scholar
  27. Bucha, V. (1970). Influence of the Earth’s magnetic field on radiocarbon dating. Pp. 501–511. In: I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology. Almqvist and Wiksell, Stockholm.Google Scholar
  28. Chalov, P. 1., T. V. Tuzova, and Y. A. Musin. (1964). The 234U12“U ratio in natural waters and its use in nuclear geochronology. Geochem. Int., 3: 402–408.Google Scholar
  29. Cherdyntsev, V. V., and P. I. Chalov. (1955). Ob izotopnom sostave radioelementov-V privodnykh obyektakh V sviazi S voprosami geokronologii. Pp. 175–233. In: Trudy III Sessii Komissi Opredelenkyu Absolyrttnogo. lzd. Akad. Nauk. SSSR.Google Scholar
  30. Cherdyntsev, V. V., D. P. Orlov, E. A. Isabaev, and V. I. Ivanov. (1961). Isotopic composition of uranium in minerals. Geochemistry, 10: 927–936.Google Scholar
  31. Clausen, H. B. (1973). Dating of polar ice by “Si. J. Glaciol., 23 (66): 411–416.Google Scholar
  32. Craig, H. (1974). Lake Tanganyika Geochemical and Hydro-graphic Study, 1973 Expedition Scripps Institution of Oceanography Report. SIO Reference series 75–5.Google Scholar
  33. Creer, K. M., R. Thompson, L. Molyneux, and F. J. Mackereth. (1972). Geomagnetic secular variations recorded in the stable magnetic remanence of recent sediments. Earth. Planet. Sci. Lett., 14: 115–127.Google Scholar
  34. Crozaz, G., E. Picciotto, and W. DeBreuck. (1964). Antarctic snow chronology with 210Pb. J. Geophys. Res., 69: 2594–2604.Google Scholar
  35. Cushing, C. E. (ed.). (1975). Radioecology and Energy Resources. Ecological Soc. Amer. Dowden, Hutchinson and Ross Inc.Google Scholar
  36. Damon, P. E. (1970). Climatic versus magnetic perturbation of the atmospheric 14C reservoir. Pp. 571–593. In: I. U. Olsson (ed.), Radiocarbon Variations and Absolute Cheonology. Almqvist and Wiksell, Stockholm.Google Scholar
  37. Dansgaard, W., H. B. Clausen, and A. Aarkrog. (1966). Evidence for bomb produced “’Si. J. Geophys. Res., 71: 5474–5477.Google Scholar
  38. Davis, R. B. (1974). Stratigraphie effects of tubifiuds in profundal lake sediments. Limnol. Oceanogr., 19: 466–488.Google Scholar
  39. Dean, W. E., S. K. Ghosh, S. Krishnaswami, and W. S. Moore. (1973). Geochemistry and accretion rates of freshwater ferromanganese nodules. Pp. 13–18. In: M. Morgenstein (ed.), The Origin and Distribution of Manganese Nodules in the Pacific and Prospects for Exploration. NSF-IDOE.Google Scholar
  40. Denham, C. R., and A. Cox. (1971). Evidence that the Laschamp polarity event did not occur 13,300–30,400 years ago. Earth Planet. Sci. Lett., 13: 181–190.Google Scholar
  41. Dooley, J. R., H. C. Granger, and J. N. Rosholt. (1966). U234 fractionation in the sandstone type uranium deposits of the Ambrosia Lake District. New Mexico Econ. Geol., 61: 1362–1368.Google Scholar
  42. Eakins, J. D., and R. T. Morrison. (1974). Dating lake sedi- ments by the determination of Pb-210. AERE-PR/EMS (United Kingdom Authority Research Group). 1: 10–12.Google Scholar
  43. Edgington, D. N., and J. A. Robbins. (1975). The behaviour of plutonium and other long lived radionuclides in Lake Michigan, IL Patterns of deposition in sediments. Pp. 245–260. In: Impacts of Nuclear Release into the Aquatic Environment. International Atomic Energy Agency, Vienna.Google Scholar
  44. Edgington, D. N., and J. A. Robbins. (1976a). Pattern of deposition of natural and fall-out radionuclides in the sediments of Lake Michigan and their relation to Limnological processes. Pp. 705–729. In: J. O. Nriagu (ed.), Environmental Biogeochemistiy. Vol. 2. Ann Arbor Science, MI.Google Scholar
  45. Edgington, D. N., and J. A. Robbins. (1976b). Records of lead deposition in Lake Michigan sediments since 1800. Environ. Sci. Technol. 10: 266–274.PubMedGoogle Scholar
  46. Edgington, D. N., J. A. Robbins, and A. W. L. Kemp. (1977). Comparitive 21“Pb, L37Cs and pollen geochronologies of sediments from Lakes Erie and Ontario. Abstract. Am. Soc. Limnol. Oceanogr. 40th Annual Meeting.Google Scholar
  47. Eriksson, E. (1962). Radioactivity in hydrology. Pp. 47–60. In: H. Irasel and A. Krebs (eds.), Nuclear Radiation in Geophysics. Academic Press, New York, NY.Google Scholar
  48. Emery, K. O., and S. C. Rittenberg. (1952). Early diagenesis of California basin sediments in relation to origin of oil. Am. Assoc. Petrol. Geol. Bull., 36: 735–806.Google Scholar
  49. Fitch, F. J., S. C. Forster, and J. A. Miller. (1974). Geologi- cal time scale. Reports Prog. Phys., 37: 1433–1496.Google Scholar
  50. Flint, R. F., and W. A. Gale. (1958). Stratigraphy and radiocarbon dates at Searles Lake, California. Am. J. Sci., 256: 689–714.Google Scholar
  51. Francis, C. W., G. Chester, and L. A. Haskin. (1970). Determination of the L10Pb mean residence time in the atmosphere. Environ. Sci. Technol., 4: 587–589.Google Scholar
  52. Fukuda, K., and S. Tsunogai. (1975). Pb-210 in precipitation in Japan and its implication for the transport of continental aerosols across the ocean. Tellus, 27: 514–521.Google Scholar
  53. Goddard, J. (1970). 23“Th/234U dating of saline deposits from Searles Lake, California. MS thesis, Queens College, New York, NY. 50 pp.Google Scholar
  54. Goldberg, E. D. (1963). Geochronology with 210Pb. Pp. 121131. In: Radioactive Dating. International Atomic Energy Agency, Vienna.Google Scholar
  55. Goldberg, E. D., and K. Bruland. (1974). Radioactive geochronologies. Pp. 451–489. In: The Sea, Vol. 5. Marine Chemistry. John Wiley, New York, NY.Google Scholar
  56. Goldberg, E. D., and M. Koide. (1962). Geochronological studies of deep sea sediments by the ionium-thorium method. Geochim. Cosmochim. Acta, 26: 417–445.Google Scholar
  57. Goldberg, E. D., B. L. K. Somayajulu, J. Galloway, I. R. Kaplan, and G. Faure. (1969). Differences between barite of marine and continental origins. Geochim. Cosmochim. Acta, 33: 287–289.Google Scholar
  58. Goldberg, E. D., V. Hodge, M. Koide, and J. J. Griffin. (1976). Metal Pollution in Tokyo as recorded in sediments of the Palace Moat. Geochem. J., 10: 165–174.Google Scholar
  59. Goreau, T. J. (1977). Quantitative effects of sediment mixing on stratigraphy and geochemistry: a signal theory approach. Nature, 265: 525–526.Google Scholar
  60. Guinasso, N. L., Jr., and D. R. Schink. (1975). Quantitative estimates of biological mixing rates in abyssal sediments. J. Geophys. Res., 80: 3032–3043.Google Scholar
  61. Gulliksen, S., R. Nydal, and K. Lovseth. (1972). Further calculations on the 14C exchange between the ocean and the atmosphere. In: Proc. 8th Intl. Conf: Radiocarbon Dating. Wellington, New Zealand (1972). C64 - C73.Google Scholar
  62. Hariss, R. C., and A. G. Troup. (1970). Chemistry and origin of freshwater ferromanganese nodules. Limnol. Oceanor., 15: 702–712.Google Scholar
  63. Hohndorf, A. (1969). Bestimmug der halbwertz eit von ~10Pb. Z. phys., 24a: 612–615.Google Scholar
  64. Honda, M., and D. Lal. (1964). Spallation cross-sections for long-lived nuclides in iron and light nuclei. Nucl. Phys., 51: 363–368.Google Scholar
  65. Hone, S. (1968). Late Pleistocene climatic changes inferred from stratographic sequences of Japanese lake sediments. Pp. 177–188. In: B. Morrison and H. E. Wright (eds.), Means of Correlation of Quarternary Successions. Univ. of Utah Press.Google Scholar
  66. Imboden, D. M., R. F. Weiss, H. Craig, R. L. Michel, and C. R. Goldman. (1977). Lake Tahoe geochemical study. 1. Lake chemistry and tritium mixing study. Limnol. Oceanogr., 22: 1039–1051.Google Scholar
  67. Israel, H., (1958). Du Natur liche radio-aktivatat in boden, wasser und luft. Beitr. Phys. Atmos., 30: 177–188.Google Scholar
  68. Jantsch, K. (1967). Kernreaktionen mit Tritonen beim “Si. Kernenergie, 10 (3): 89–91.Google Scholar
  69. Jaworowski, Z. (1969). Radioactive lead in the environment and in the human body. Atom. Energy. Rev., 7: 3–45.Google Scholar
  70. Jaworowski, Z., J. Bilkrewicz, Kownacka, and S. Wlodek. (1972). Artificial sources of natural radionuclides in environment. Pp. 809–818. In: J. A. S. Adams, W. M. Lowder, and T. F. Gessell (eds.), in: Natural Radiation Environment II. Vol. 2.Google Scholar
  71. Johansen, K. A., and J. A. Robbins. (1977). Growth rates of ferromanganese nodules from Lake Michigan. Abstract. Am. Soc. Limnol. Oceanogr. 40th Annual Meeting.Google Scholar
  72. Joseph, A. B., P. F. Gustafson, I. R. Russell, E. A. Schuert, H. L. Volchok, and A. Tamplin. (1971). Sources of radioactivity and their characteristics. Pp. 6–41. In: Radioactivity in the Marine Environment. U.S. National Academy of Sciences, Washington, D.C.Google Scholar
  73. Joshi, L. V., C. Rangarajan, and S. Gopalkrishnan. (1969). Measurement of 210Pb in surface air and precipitation. Tellus, 21: 107–112.Google Scholar
  74. Junge, C. E. (1963). Air Chemistry and Radioactivity. Academic Press, New York, NY.Google Scholar
  75. Kanwisher, J. (1960). pCO2 in seawater and its effect on the movement of CO2 in nature. Tellus, 12: 209–215.Google Scholar
  76. Kaufman, A. (1964). 230Th-234U dating of carbonates from Lakes Lahontan and Bonneville. Ph.D. Thesis, Columbia University.Google Scholar
  77. Kaufman, A., and W. S. Broecker. (1965). Comparison of 23°Th and 19C ages for carbonate materials from Lakes Lahontan and Bonneville. J. Geophys. Res., 70: 4039–4054.Google Scholar
  78. Kharkar, D. P., D. Lal, and B. L. K. Somayajulu. (1963). Investigations in marine environments using radioisotopes produced by cosmic rays. Pp. 175–187. In: Radioactive Dating. International Atomic Energy Agency, Vienna.Google Scholar
  79. Kharkar, D. P., V. N. Nijampurkar, and D. Lal. (1966). Global fall-out of “Si. Geochim. Cosmochim. Acta, 30: 621–631.Google Scholar
  80. Kigoshi, K. (1971). Alpha-recoil Th-234: dissolution into water and the U-234/U-238 disequilibrium in nature. Science, 173: 47–48.PubMedGoogle Scholar
  81. Koide, M., K. W. Bruland, and E. D. Goldberg. (1973). Th228/Th-232 and Pb-210 geochronologies in marine and lake sediments. Geochim. Cosmochim. Acta, 37: 1171–1187.Google Scholar
  82. Koide, M., K. Bruland, and E. D. Goldberg. (1976). 226Ra geochronology of a coastal marine sediment. Earth Planet. Sci. Lett., 31: 31–36.Google Scholar
  83. Krishnaswami, S. (1973). Geochemistry of transition elements and radioisotopes in marine and fresh-water environments. Ph.D. Thesis, Bombay Univ. 224 pp.Google Scholar
  84. Krishnaswami, S. (1974). Man-made plutonium in freshwater and marine environments. Proc. Ind. Acad. Sci., 80: 116–123.Google Scholar
  85. Krishnaswami, S., D. Lal, J. M. Martin, and M. Meybeck. (1971). Geochronology of lake sediments. Earth Planet. Sci. Lett., 11: 407–414.Google Scholar
  86. Krishnaswami, S., D. Lal, B. S. Amin, and A. Soutar. (1973). Geochronological studies in Santa Barbara basin: “Fe as a unique tracer for particulate settling. Limnol. Oceanogr., 18: 763–770.Google Scholar
  87. Krishnaswami, S., and W. S. Moore. (1973). Accretion rates of fresh-water ferromanganese deposits. Nature 243: 114–116.Google Scholar
  88. Krishnaswami, S., L. K. Benninger, R. C. Aller, and K. L. Von Damm. (1978). Application of Be-7 for estimating particle reworking rates in near shore and lake sediments, abstract 065, AGU Spring Meeting.Google Scholar
  89. Ku, T-L. (1976). The uranium-series methods of age determi- nation. Ann. Rev. Earth Planet. Sci., 4: 347–379.Google Scholar
  90. Lal, D. (1963). On the investigations of geophysical processes using cosmic ray produced radioactivity. Pp. 115–142. In: J. Geiss and E. D. Goldberg (eds.), Earth Sciences and Meteoritics. North-Holland Publishing Co.Google Scholar
  91. Lal, D. (1969). Characteristics of the large scale oceanic circulation as derived from the distribution of radioactive elements. Pp. 29–48. Morning Review Lectures. 2nd International Oceanographic Congress, Moscow, 30 May-9 June 1966. (Unesco pub.).Google Scholar
  92. Lal, D., and B. Peters. (1967), Cosmic ray produced radioactivity of the earth. Pp. 551–612. In: Handbuch der Physik. Vol. 46. Springer Verlag, Berlin.Google Scholar
  93. Lal, D., and Rama. (1966). Characteristics of global tropospheric mixing based on man-made “C, 3H and ‘Sr. J. Geophys. Res., 71: 2865–2874.Google Scholar
  94. Lal, D., and H. Suess. (1968). Radioactivity of atmosphere and hydrosphere, Ann. Rev. Nucl. Sci., 18: 407–434.Google Scholar
  95. Lal, D., and B. L. K. Somayajulu. (1975). On the importance of studying magnetic susceptibility stratigraphy and geochronology of Lake Biwa sediments. Pp. 530–535. In: S. Horte, (ed.), Paleolimnology and the Japanese Pleistocene. Vol. 3. Kyoto University. Kyoto.Google Scholar
  96. Lal, D., and V. S. Venkatavaradan. (1970). Analysis of the causes of 14C variations in the atmosphere. Pp. 549–569. In: I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology. Almqvist and Wiksell, Stockholm.Google Scholar
  97. Lal, D., V. N. Nijampurkar, G. Rajagopalan, and B. L. K. Somayajulu. (1978). Annual fall-out of ‘Be, “I’, ”5S, “Na, 210Pb ”Si in Indian rains. Sub. Proc. Ind. Acad. Sci.Google Scholar
  98. Lerman, A., and T. A. Lietzke. (1975). Uptake and migration of tracers in lake sediments. Limnol. Oceanogr., 20: 497–510.Google Scholar
  99. Lewis, D. M. (1976). The geochemistry of manganese, iron, uranium, Pb-210 and major ions in the Susquehanna River. Ph.D. Thesis, Yale University. 272 pp.Google Scholar
  100. Libby, W. F. (1955). Radiocarbon Dating. University of Chicago Press, Chicago, IL. 124 pp.Google Scholar
  101. Lingenfelter, R. E. (1976). Cosmic ray produced neutrons and nuclides in the Earth’s atmosphere. Pp. 193–205. In: B. S. P. Shen and M. Merker (eds.), Spallation and Nuclear Reactions and Their Applications. D. Reidel Publishing Co., Dordrecht, Holland.Google Scholar
  102. Lingenfelter, R. E., and R. Ramaty. (1970). Astrophysical and geophysical variations in t4C production. Pp. 513537. In: I. U. Olsson (eds.), Radiocarbon Variations and Absolute Chronology. Almqvist and Wiksell, Stockholm.Google Scholar
  103. Machta, L. (1974). Global scale atmospheric mixing. Advan. Geophys., 18B: 33–56.Google Scholar
  104. Machta, L., K. Telegadas, and D. L. Harris. (1970). 90Sr fallout over Lake Michigan. J. Geophys. Res., 75: 1092–1096.Google Scholar
  105. Manheim, F. T. (1964). Manganese-iron accumulations in shallow marine environment. Pp. 217–276. In: D. Schink and J. Corliss (eds.), Proc. Symposium on Marine Geochemistry.Google Scholar
  106. Martell, E. A. (1970). Transport patterns and residence times for atmospheric trace constituents vs. altitude. Pp. 138157. Advances in Chemistry Series, No. 93, Radionuclides in the Environment.Google Scholar
  107. Martin, J. M. (1971). Contribution a l’etude des apports terrigenes d’oligoelements stables et radioactifs a l’océan. Ph.D. Thesis, Univ. Paris. 156 pp.Google Scholar
  108. Matsumoto, E. (1975a). Accumulation rate of Lake Biwa Sediments by “’Pb method. J. Geol. Soc. Japan, 81: 301–306.Google Scholar
  109. Matsumoto, E. (1975b). 21“Pb geochronology of sediments from Lake Shinji. Geochem. J., 9: 167–172.Google Scholar
  110. McCaffrey, R. J. (1977). A record of the accumulation of the sediment and trace metals in a Connecticut, USA, salt marsh. Ph.D. thesis, Yale Univ. 156 pp.Google Scholar
  111. Meybeck, M., J. M. Martin, and P. Oliver. (1975). Geochimie des eaus et des sediments de queleques lacs volcaniques du massif central francaise. Veh. Int. Verein. Limnol., 19: 1150–1164.Google Scholar
  112. Moore, W. S. (1967). Amazon and Mississippi River concentrations of U, Th and Ra isotopes. Earth Planet. Sci. Lett., 2: 231–234.Google Scholar
  113. Moore, H. E., S. E. Poet, and E. A. Martell. (1973). 222Rn, 210Pó 210Bi, and 210Po profiles and aerosol residence times versus altitude. J. Geophys. Res., 78: 7065–7075.Google Scholar
  114. Moore, W. S., W. Dean, and S. Krishnaswami. (1976b). Episodic growth of ferromanganese nodules in Oneida Lake, New York. Pp. 1017–1018. Geol. Soc. Amer. Abstract Denver, CO.Google Scholar
  115. Moore, H. E., E. A. Martell, and S. E. Poet. (1976a). Sources of 210Pb in the atmosphere. Environ. Sci. Tech., 10: 586–591.Google Scholar
  116. Nelson, D. M., P. F. Gustafson, and J. Sedlet. (1970). Fallout radionuclides as a tracers of lake mixing. Pp. 490494. In: Proc. 13th Conf., Great Lakes Res.Google Scholar
  117. Nezami, M., G. Lambert, C. Lorius, and S. Laberyrie. (1964). Mesure de taux d’ accumulation de la neige au bord de continet antarctique par la method du plomb-210. C.R. Acad. Sci. Paris, 259: 3319–3322.Google Scholar
  118. Nijampurkar, V. N. (1975). Applications of cosmic ray produced isotope Si-32 to hydrology with special reference to dating groundwaters. Ph.D. Thesis, Bombay Univ. 165 pp.Google Scholar
  119. Nijampurkar, V. N., B. S. Amin, D. P. Kharkar, and D. Lal. (1966). “Dating” ground waters of ages younger than 1000–1500 years using natural 32Si. Nature, 210:478–480.Google Scholar
  120. Nozaki, Y. (1977). Distribution of natural radionuclides in sediments influenced by bioturbation. Jour. Geol. Soc. Japan. 8: 699–706.Google Scholar
  121. Nozaki, Y., J. K. Cochran, K. K. Turekian, and G. Keller. (1977). Radiocarbon and ~10Pb distribution in submersible-taken deep-sea cores from Project FAMOUS. Earth Planet. Sci. Lett., 34: 167–173.Google Scholar
  122. Oeschger, H., and A. Gugelmann. (1974). Das geophysikalisches Verhalten der Umweltisotope als Basis fur Modellrechnungen in der Isofopenhydrologie. Osterreisch. Wasserwirst., 26: 43–49.Google Scholar
  123. Peirson, D. H., R. S. Cambray, and G. S. Spicer. (1966). Lead-210 and polonium-210 in the atmosphere. Tellus, 18: 427–433.Google Scholar
  124. Pennington, W., R. S. Cambray, and E. M. Fisher. (1973). Observations on lake sediments using fall-out 137Cs as a tracer. Nature, 242: 324–326.PubMedGoogle Scholar
  125. Pennington, W., R. S. Cambray, J. D. Eakins, and D. D. Harkness. (1975). Radionuclide dating of the recent sediments of Blelham Tarn. Freshwater Biol., 6: 317–331.Google Scholar
  126. Petit, D. (1974). Pb-210 et isotopes stables du plomb dans des sediments lacustres. Earth Planet. Sci. Lett., 23: 199–205.Google Scholar
  127. Picciotto, E., R. Cameron, G. Crozaz, S. Deutsch, and S. Wilgin. (1968), Determination of rate of snow accumulation at the pole of relative inaccessibility, eastern Antarctica. J. Glaciol., 7: 273–287.Google Scholar
  128. Poet, S. E., H. E. Moore, and E. A. Martell. (1972). 210Pb, 210Bi and 210Po in the atmosphere: Accurate measurement and application to aerosol residence time determination. J. Geophys. Res., 77: 6515–6527.Google Scholar
  129. Rafter, T. A., and B. J. O’Brien. (1972). 14C measurements in the atmosphere and in the South Pacific Ocean. A recalculation of exchange rates between the atmosphere and the ocean. In. Proc. 8th Intl. Conf. Radiocarbon Dating. Wellington, New Zealand (1972). C17 - C42.Google Scholar
  130. Rama, M. Koide, and E. D. Goldberg. (1961). Pb-210 in natural waters. Science, 134: 98–99.PubMedGoogle Scholar
  131. Ritchie, J. C., J. R. McHenry, and A. C. Gill. (1973). Dating recent reservoir sediments. Limnol. Oceanogr., 18: 254–263.Google Scholar
  132. Robbins, J. A., and E. Callender. (1975). Diagenesis of manganese in Lake Michigan sediments. Am. J. Sci., 275: 512–533.Google Scholar
  133. Robbins, J. A., and D. N. Eddington. (1975). Determination of recent sedimentation rates in Lake Michigan using 21“Pb and Cs-137. Geochim. Cosmochim. Acta, 39: 285–304.Google Scholar
  134. Robbins, J. A. (1977). Geochemical and Geophysical Applications of Radioactive Lead. In: J. O. Nriagu (ed.), Biogeochemistry of Lead. Elsevier Scientific Publishers, Netherlands. ( In press ).Google Scholar
  135. Robbins, J. A., J. R. Krezoski, and S. C. Mozley. (1977). Radioactivity in sediments of Great Lakes: Post depositional redistribution by deposit feeding organisms. Earth Planet. Sci. Lett. 36: 325–333.Google Scholar
  136. Rona, E., and W. D. Urry. (1952). Radioactivity of ocean sediments: VIII. Radium and uranium content of ocean and river water, Am. J. Sci., 250: 241–262.Google Scholar
  137. Rosholt, J. N., W. R. Shields, and E. L. Garner. (1963). Isotopic fractionation of uranium in sandstone. Science, 139: 224–226.PubMedGoogle Scholar
  138. Sackett, W. M., T. Mo, R. F. Spalding, and M. E. Exner. (1973). A revaluation of the marine geochemistry of Uranium. Pp. 757–769. In: Proc. Symp. on “Radioactive Contamination of the Marine Environment.” International Atomic Energy Agency, Vienna.Google Scholar
  139. Schell, W. R. (1974). Sedimentation rates and mean residence times of stable Pb and Pb-210 in Lake Washington, Puget Sound estuaries and a coastal region. USAEC Rep. RLO-2225-T14–6.Google Scholar
  140. Sheppard, P. A. (1963). Atmospheric tracers and the study of the general circulation of the atmosphere. Rep. Prog. Phys., XXVI: 213–267.Google Scholar
  141. Smith, G. I. (1968). Late quarternary geologic and climatic history of Searles Lake, Southeastern California. Pp. 293–310. In: R. B. Morrison and H. E. Wright (eds.), Means of Correlation of Quarternary Successions. University of Utah Press.Google Scholar
  142. Stank, I. Y., F. E. Stank, and B. A. Mikhailov. (1958). Shifts of isotopic ratios in natural materials. Geochemistry, 587–590.Google Scholar
  143. Stebbins, A. K. (1961). Second special report on the high altitude sampling program. Pp. 127–133. U.S. Dept. Def. Repl. DASA 539-B.Google Scholar
  144. Stuiver, M. (1964). Carbon isotopic distribution and correlated chronology of Searles Lake sediments. Am. J. Sci., 262: 377–392.Google Scholar
  145. Stuiver, M. (1967). Origin and extent of atmospheric C14 variations during the past 10,000 years. Pp. 27–40. In: Radioactive Dating and Methods of Low level counting. International Atomic Energy Agency, Vienna.Google Scholar
  146. Stuiver, M. (1970). Long-term C14 variations. Pp. 197–213. In: I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology. Almqvist and Wiksell, Stockholm.Google Scholar
  147. Stuiver, M. (1971). Evidence for the variation of atmospheric 14C content in the late Quarternary. Pp. 57–70. In: K. K. Turekian (ed.), Late Cenozoic Glacial Ages. Yale Univ. Press.Google Scholar
  148. Suess, H. E. (1955). Radiocarbon concentration in modern wood. Science, 122: 415–417.Google Scholar
  149. Suess, H. E. (1965). Secular variations of the cosmic-rayproduced carbon-14 in the atmosphere and their interpretations. J. Geophys. Res., 70: 5937–5952.Google Scholar
  150. Suess, H. E. (1967). Bristlecone-pine calibration of the radiocarbon time scale from 4100 B.C. to 1500 B.C. Pp. 143–151. In: Radioactive Dating and Low level counting. International Atomic Energy Agency, Vienna.Google Scholar
  151. Suess, H. E. (1968). Climatic changes, solar activity, and the cosmic-ray production rate of natural radiocarbon. Meteorol. Monogr., 8: 146–150.Google Scholar
  152. Suess, H. E. (1970). The three causes of the secular C14 fluctuations, their amplitudes and time constants. Pp. 595–605. In: I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology. Almqvist and Wiksell, Stockholm.Google Scholar
  153. Tatsumoto, M., and E. D. Goldberg. (1959). Some aspects of the marine geochemistry of uranium. Geochim. Cosmochim. Acta, 17: 201–208.Google Scholar
  154. Thurber, D. L. (1962). Anomalous 234Uf238U in nature. J. Geophys. Res., 67: 4518–4520.Google Scholar
  155. Thurber, D. L. (1963). Anomalous 234U1233U and an investigation of the potential of ‘34U for Pleistocene chronology. Ph.D. Thesis, Columbia, Univ., New York, NY.Google Scholar
  156. Thurber, D. L., and W. S. Broecker. (1970). The behaviour of radiocarbon in the surface waters of Great Basin. Pp. 379–400. In: I. U. Olsson (ed.), Radiocarbon Variations and Absolute Chronology, Proc. 12th Nobel Symp.Google Scholar
  157. Thurber, D. L., W. S. Broecker, R. L. Blanchard, and H. A. Portraz. (1965). Uranium series ages of Pacific atoll coral. Science, 149: 55–58.PubMedGoogle Scholar
  158. Torgersen, T., Z. Top, W. B. Clarke, W. J. Jenkins, and W. S. Broecker. (1977). A new method for physical limnology-tritium-helium-3 ages-results for Lakes Erie, Huron, and Ontario. Limnol. Oceanogr., 22: 181–193.Google Scholar
  159. Turekian, K. K., and L. H. Chan. (1971). The marine geochemistry of uranium isotopes, 230Th and ‘Pa. In: A. O. Brunfelt and E. Steines (eds.), Activation Analysis in Geochemistry and Cosmochemistry. Universitetsforlaget, Oslo.Google Scholar
  160. Turekian, K. K., and J. K. Cochran. (1977). Marine chronologies with natural radionuclides. In: J. P. Riley and G. Skirrow (eds.), Chemical Oceanography. Academic Press, London. ( In press ).Google Scholar
  161. Turekian, K. K., Y. Nozaki, and L. K. Benninger. (1977). Geochemistry of atmospheric radon and radon products. Ann. Rev. Earth Planet. Sci., 5: 227–255.Google Scholar
  162. Veeh, H. H. (1966). 230Th/238U ages of Pleistocene high sea level stands. J. Geophys. Res., 71: 3379–3386.Google Scholar
  163. Volchok, H. L. (1973). World wide deposition of “Sr through 1972. USAEC, HASL-276, I-3–18.Google Scholar
  164. Volchok, H. L. (1974). Is there excess “Sr fall-out in the oceans? Health and Safety Laboratory, USAEC, HASL-296, I-82–89.Google Scholar
  165. Volchok, H. L., M. Feiner, H. J. Simpson, W. S. Broecker, V. E. Noshkin, V. T. Bowen, and E. Willis. (1970). Ocean Fall-out-The Crater Lake Experiment. J. Geophys. Res., 75: 1084–1091.Google Scholar
  166. Wahlgren, M. A., and D. M. Nelson. (1973). Residence times for 230Pu and 137Cs in Lake Michigan water. Pp. 85–89. In: Annual report. Argonne National Lab, Argonne, IL., ANL-8060 ( Part III, Ecology).Google Scholar
  167. Wilkening, M. H., W. E. Clements, and D. Stanley. (1975). Radon-222 flux measurements in widely separated regions. Pp. 717–730. In: J. A. S. Adams, W. M. Lowder, and T. F. Gessel (eds.), Natural Radiation Environment II.Google Scholar
  168. Windom, H. (1969). Atmospheric dust records in permanent snowfields: Implications to marine sedimentation. Geol. Soc. Am. Bull., 80: 761–782.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • S. Krishnaswami
  • D. Lal

There are no affiliations available

Personalised recommendations