Lakes pp 21-64 | Cite as

Water Circulation and Dispersal Mechanisms

  • G. T. Csanady


Water motions in lakes are mostly caused by the wind. Random variability of the wind and the geometrical complexity of natural lake basins combine to produce temporally changing and spatially nonuniform water motions. The human mind cannot fully comprehend the complexity of these motions even in principle, because an infinite number of parameters are necessary for their full description, and simplifying strategies must be adopted. One time-honored approach is some form of averaging, the reduction of complexity to a few statistics. For example, monthly mean current patterns may be studied in a basin, or current records obtained at a single location subjected to spectral analysis. However, some of the details removed by statistical processing can be of interest in their own right, or their effects may be important in some practical problem such as pollution.


Wind Stress Coriolis Force Shore Zone North Shore Trunk Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ball, F. K. (1965). Second-class motions of a shallow liquid. J. Fluid Mech.,23: 545–562.CrossRefGoogle Scholar
  2. Bennett, J. (1972). On the dynamics of wind-driven lake currents. Ph.D. thesis, University of Wisconsin, Madison.Google Scholar
  3. Bennett, J. (1974). On the dynamics of wind driven lake currents. J. Phys. Oceanogr., 4: 400–414.CrossRefGoogle Scholar
  4. Birchfield, G. E. (1969). The response of a circular model Great Lake to a suddenly imposed wind stress. J. Geophys. Res., 74: 5547–5554.CrossRefGoogle Scholar
  5. Birchfield, G. E., and D. R. Davidson. (1967). A case study of coastal currents in Lake Michigan. Pp. 264–273. Proc. 10th Conf. Great Lakes Res., Univ. Michigan, Ann Arbor, MI.Google Scholar
  6. Blanton, J. O. (1974). Some characteristics of nearshore currents along the north shore of Lake Ontario. J. Phys. Oceanogr., 4: 415–424.CrossRefGoogle Scholar
  7. Blanton, J. O. (1975). Nearshore lake currents measured during upwelling and downwelling of the thermocline in Lake Ontario. J. Phys. Oceanogr., 5: 111–124.CrossRefGoogle Scholar
  8. Boyce, F. M. (1972). Temperature transects of Lake Ontario. Manuscript, Canada Centre for Inland Waters, Burlington, Ontario.Google Scholar
  9. Boyce, F. M., and C. H. Mortimer. (1976). Temperature distributions across Lake Ontario. Center for Great Lakes Studies, Univ. Wisconsin, Milwaukee, draft report. 362 pp.Google Scholar
  10. Carrier, G. F. (1953). Boundary Layer Problems in Applied Mechanics. Vol. 3. Academic Press, New York, NY. Pp. 1–19.Google Scholar
  11. Charney, J. G. (1955a). The generation of oceanic currents by the wind. J. Marine Res., 14: 477–498.Google Scholar
  12. Charney, J. G. (1955b). The Gulf Stream as an inertial bound-ary layer. Proc. Nat. Acad. Sci. USA, 41:731–740. Crépon, M. (1967). Hydrodynamique marine en regime im-pulsionnel. Cah. Oceanogr., 19: 847–880.Google Scholar
  13. Crépon, M. (1969). Hydrodynamique marine en regime im- pulsionnel. Cah. Oceanogr., 21: 333–353; 863–877.Google Scholar
  14. Csanady, G. T. (1968). Motions in a model Great Lake due to a suddenly imposed wind. J. Geophys. Res., 73: 64356447.Google Scholar
  15. Csanady, G. T. (1972a). Frictional currents in the mixed layer at the free surface. J. Phys. Oceanogr., 2: 498–508.CrossRefGoogle Scholar
  16. Csanady, G. T. (1972b). Response of large stratified lakes to wind. J. Phys. Oceanogr., 2: 3–13.CrossRefGoogle Scholar
  17. Csanady, G. T. (1972c). The coastal boundary layer in LakeGoogle Scholar
  18. Ontario. J. Phys. Oceanogr.,2:41–53; 168–176.Google Scholar
  19. Csanady, G. T. (1973a). Wind-induced barotropic motions in long lakes. J. Phys. Oceanogr., 3: 429–438.CrossRefGoogle Scholar
  20. Csanady, G. T. (1973b). Transverse internal seiches in large, oblong lakes and marginal seas. J. Phys. Oceanogr., 3: 439–447.CrossRefGoogle Scholar
  21. Csanady, G. T. (1974). Mass exchange episodes in the coastal boundary layer, associated with current reversals. Rapp. P.-v. Réun. Cons. Int. Explor. Mer, 167; 41–45.Google Scholar
  22. Csanady, G. T. (1975a). Hydrodynamics of large lakes. Ann. Rev. Fluid Mech. 7: 357–386.CrossRefGoogle Scholar
  23. Csanady, G. T. (1975b). Lateral momentum flux in boundary currents. J. Phys. Oceanogr., 5: 705–717.CrossRefGoogle Scholar
  24. Csanady, G. T. (1976). Topographic waves in Lake Ontario. J. Phys. Oceanogr., 6: 93–103.CrossRefGoogle Scholar
  25. Csanady, G. T., and J. T. Scott. (1974). Baroclinic coastal jets in Lake Ontario during IFYGL. J. Phys. Oceanogr., 4: 524–541.CrossRefGoogle Scholar
  26. Cutchin, D. L., and R. L. Smith. (1973). Continental shelf waves: Low frequency variations in sea level and currents over the Oregon continental shelf. J. Phys. Oceanogr., 3: 73–82.CrossRefGoogle Scholar
  27. Gill, A. E., and E. H. Schumann. (1974). The generation of long shelf waves by the wind. J. Phys. Oceanogr., 4: 8390.CrossRefGoogle Scholar
  28. Hamon, B. V. (1962). The spectrums of mean sea level at Sydney, Coff’s Harbour and Lord Howe Island. J. Geophys. Res., 67: 5147–5155.CrossRefGoogle Scholar
  29. Hutchinson, G. E. (1957). A Treatise on Limnology. Vol. I. John Wiley, New York, NY. 1015 pp.Google Scholar
  30. Jones, I. S. F. (1968). Surface layer currents in Lake Huron. Pp. 406–411. Proc. 11th Conf. Great Lakes Res., Int. Assoc. Great Lakes Res.Google Scholar
  31. Longuet-Higgins, M. S. (1968). Double Kelvin waves with continuous depth profiles. J. Fluid Mech., 34: 49–80.CrossRefGoogle Scholar
  32. Malone, F. D. (1968). An analysis of current measurements in Lake Michigan. J. Geophys. Res., 73: 7065–7081.CrossRefGoogle Scholar
  33. Mortimer, C. H. (1953). The resonant response of stratified lakes to wind. Schweiz. Z. Hydrol., 15: 94–151.Google Scholar
  34. Mortimer, C. H. (1963). Frontiers in physical limnology with particular reference to long waves in rotating basins. Great Lakes Div. Publ. (University of Michigan), 10: 942.Google Scholar
  35. Mortimer, C. H. (1968). Internal Waves and Associated Currents Observed in Lake Michigan during the Sum- mer of 1963. Spec. Rep. No. 1, Center for Great Lakes Studies, University of Wisconsin, Milwaukee.Google Scholar
  36. Mortimer, C. H. (1971). Large-Scale Oscillatory Motions and Seasonal Temperature Changes in Lake Michigan Google Scholar
  37. and Lake Ontario Spec. Rep. No. 12, Center for Great Lakes Studies, University of Wisconsin, Milwaukee.Google Scholar
  38. Mortimer, C. H., and E. J. Fee. (1976). Free surface oscillations and tides of Lakes Michigan and Superior. Phil. Trans. Roy. Soc. London A, 281: 1–61.CrossRefGoogle Scholar
  39. Platzman, G. W. (1972) Two dimensional free oscillations inGoogle Scholar
  40. natural basins. J. Phys. Oceanogr. 2, 117–138 Proudman, J. 1953. Dynamical Oceanography. Wiley, New York, NY. 409 pp.Google Scholar
  41. Rao, D. B., and T. S. Murty. (1970). Calculation of the steady-state wind-driven circulation in Lake Ontario. Arch. Meteor. Geophys. Bioklim., A19: 195–210.CrossRefGoogle Scholar
  42. Rao, D. B., and D. J. Schwab. (1976). Two dimensional normal modes in arbitrary enclosed basins or a rotating earth: Application to Lakes Ontario and Superior. Phil Trans. Roy. Soc. London A, 281: 63–96.CrossRefGoogle Scholar
  43. Robinson, A. R. (1964) Continental Shelf Waves and the response of sea level to weather systems. J. Geophys. Res. 69, 367–368.CrossRefGoogle Scholar
  44. Sato, G. K., and C. H. Mortimer. (1975). Lake Currents and Temperatures Near the Western Shore of Lake Michi-gan. Univ. Wisconsin-Milwaukee, Center for Great Lakes Studies, Spec. Rep. No. 22.Google Scholar
  45. Simons, T. J. (1974). Verification of numerical models of Lake Ontario: Part I. Circulation in spring and early summer. J. Phys. Oceanogr., 4: 507–523.CrossRefGoogle Scholar
  46. Simons, T. J. (1975). Verification of numerical models of Lake Ontario. II. Stratified circulations and temperature changes. J. Phys. Oceanogr., 5: 98–110.CrossRefGoogle Scholar
  47. Sweers, H. E. (1969). Structure, Dynamics and Chemistry of Lake Ontario. Marine Sciences Branch, Dept. Energy, Mines and Resources, Ottawa. 227 pp.Google Scholar
  48. Verber, J. L. (1966). Inertial currents in the Great Lakes. Pp.375–379. Proc. 9th Conf. Great Lakes Res.Google Scholar
  49. Weiler, H. S. (1968). Current measurements in Lake Ontario in 1967. Pp. 500–511. Proc. 11th Conf. Great Lakes Res. Int. Assoc. Great Lakes Res.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • G. T. Csanady

There are no affiliations available

Personalised recommendations