Skip to main content

Water Circulation and Dispersal Mechanisms

  • Chapter
Lakes

Abstract

Water motions in lakes are mostly caused by the wind. Random variability of the wind and the geometrical complexity of natural lake basins combine to produce temporally changing and spatially nonuniform water motions. The human mind cannot fully comprehend the complexity of these motions even in principle, because an infinite number of parameters are necessary for their full description, and simplifying strategies must be adopted. One time-honored approach is some form of averaging, the reduction of complexity to a few statistics. For example, monthly mean current patterns may be studied in a basin, or current records obtained at a single location subjected to spectral analysis. However, some of the details removed by statistical processing can be of interest in their own right, or their effects may be important in some practical problem such as pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ball, F. K. (1965). Second-class motions of a shallow liquid. J. Fluid Mech.,23: 545–562.

    Article  Google Scholar 

  • Bennett, J. (1972). On the dynamics of wind-driven lake currents. Ph.D. thesis, University of Wisconsin, Madison.

    Google Scholar 

  • Bennett, J. (1974). On the dynamics of wind driven lake currents. J. Phys. Oceanogr., 4: 400–414.

    Article  Google Scholar 

  • Birchfield, G. E. (1969). The response of a circular model Great Lake to a suddenly imposed wind stress. J. Geophys. Res., 74: 5547–5554.

    Article  Google Scholar 

  • Birchfield, G. E., and D. R. Davidson. (1967). A case study of coastal currents in Lake Michigan. Pp. 264–273. Proc. 10th Conf. Great Lakes Res., Univ. Michigan, Ann Arbor, MI.

    Google Scholar 

  • Blanton, J. O. (1974). Some characteristics of nearshore currents along the north shore of Lake Ontario. J. Phys. Oceanogr., 4: 415–424.

    Article  Google Scholar 

  • Blanton, J. O. (1975). Nearshore lake currents measured during upwelling and downwelling of the thermocline in Lake Ontario. J. Phys. Oceanogr., 5: 111–124.

    Article  Google Scholar 

  • Boyce, F. M. (1972). Temperature transects of Lake Ontario. Manuscript, Canada Centre for Inland Waters, Burlington, Ontario.

    Google Scholar 

  • Boyce, F. M., and C. H. Mortimer. (1976). Temperature distributions across Lake Ontario. Center for Great Lakes Studies, Univ. Wisconsin, Milwaukee, draft report. 362 pp.

    Google Scholar 

  • Carrier, G. F. (1953). Boundary Layer Problems in Applied Mechanics. Vol. 3. Academic Press, New York, NY. Pp. 1–19.

    Google Scholar 

  • Charney, J. G. (1955a). The generation of oceanic currents by the wind. J. Marine Res., 14: 477–498.

    Google Scholar 

  • Charney, J. G. (1955b). The Gulf Stream as an inertial bound-ary layer. Proc. Nat. Acad. Sci. USA, 41:731–740. Crépon, M. (1967). Hydrodynamique marine en regime im-pulsionnel. Cah. Oceanogr., 19: 847–880.

    Google Scholar 

  • Crépon, M. (1969). Hydrodynamique marine en regime im- pulsionnel. Cah. Oceanogr., 21: 333–353; 863–877.

    Google Scholar 

  • Csanady, G. T. (1968). Motions in a model Great Lake due to a suddenly imposed wind. J. Geophys. Res., 73: 64356447.

    Google Scholar 

  • Csanady, G. T. (1972a). Frictional currents in the mixed layer at the free surface. J. Phys. Oceanogr., 2: 498–508.

    Article  Google Scholar 

  • Csanady, G. T. (1972b). Response of large stratified lakes to wind. J. Phys. Oceanogr., 2: 3–13.

    Article  Google Scholar 

  • Csanady, G. T. (1972c). The coastal boundary layer in Lake

    Google Scholar 

  • Ontario. J. Phys. Oceanogr.,2:41–53; 168–176.

    Google Scholar 

  • Csanady, G. T. (1973a). Wind-induced barotropic motions in long lakes. J. Phys. Oceanogr., 3: 429–438.

    Article  Google Scholar 

  • Csanady, G. T. (1973b). Transverse internal seiches in large, oblong lakes and marginal seas. J. Phys. Oceanogr., 3: 439–447.

    Article  Google Scholar 

  • Csanady, G. T. (1974). Mass exchange episodes in the coastal boundary layer, associated with current reversals. Rapp. P.-v. Réun. Cons. Int. Explor. Mer, 167; 41–45.

    Google Scholar 

  • Csanady, G. T. (1975a). Hydrodynamics of large lakes. Ann. Rev. Fluid Mech. 7: 357–386.

    Article  Google Scholar 

  • Csanady, G. T. (1975b). Lateral momentum flux in boundary currents. J. Phys. Oceanogr., 5: 705–717.

    Article  Google Scholar 

  • Csanady, G. T. (1976). Topographic waves in Lake Ontario. J. Phys. Oceanogr., 6: 93–103.

    Article  Google Scholar 

  • Csanady, G. T., and J. T. Scott. (1974). Baroclinic coastal jets in Lake Ontario during IFYGL. J. Phys. Oceanogr., 4: 524–541.

    Article  Google Scholar 

  • Cutchin, D. L., and R. L. Smith. (1973). Continental shelf waves: Low frequency variations in sea level and currents over the Oregon continental shelf. J. Phys. Oceanogr., 3: 73–82.

    Article  Google Scholar 

  • Gill, A. E., and E. H. Schumann. (1974). The generation of long shelf waves by the wind. J. Phys. Oceanogr., 4: 8390.

    Article  Google Scholar 

  • Hamon, B. V. (1962). The spectrums of mean sea level at Sydney, Coff’s Harbour and Lord Howe Island. J. Geophys. Res., 67: 5147–5155.

    Article  Google Scholar 

  • Hutchinson, G. E. (1957). A Treatise on Limnology. Vol. I. John Wiley, New York, NY. 1015 pp.

    Google Scholar 

  • Jones, I. S. F. (1968). Surface layer currents in Lake Huron. Pp. 406–411. Proc. 11th Conf. Great Lakes Res., Int. Assoc. Great Lakes Res.

    Google Scholar 

  • Longuet-Higgins, M. S. (1968). Double Kelvin waves with continuous depth profiles. J. Fluid Mech., 34: 49–80.

    Article  Google Scholar 

  • Malone, F. D. (1968). An analysis of current measurements in Lake Michigan. J. Geophys. Res., 73: 7065–7081.

    Article  Google Scholar 

  • Mortimer, C. H. (1953). The resonant response of stratified lakes to wind. Schweiz. Z. Hydrol., 15: 94–151.

    Google Scholar 

  • Mortimer, C. H. (1963). Frontiers in physical limnology with particular reference to long waves in rotating basins. Great Lakes Div. Publ. (University of Michigan), 10: 942.

    Google Scholar 

  • Mortimer, C. H. (1968). Internal Waves and Associated Currents Observed in Lake Michigan during the Sum- mer of 1963. Spec. Rep. No. 1, Center for Great Lakes Studies, University of Wisconsin, Milwaukee.

    Google Scholar 

  • Mortimer, C. H. (1971). Large-Scale Oscillatory Motions and Seasonal Temperature Changes in Lake Michigan

    Google Scholar 

  • and Lake Ontario Spec. Rep. No. 12, Center for Great Lakes Studies, University of Wisconsin, Milwaukee.

    Google Scholar 

  • Mortimer, C. H., and E. J. Fee. (1976). Free surface oscillations and tides of Lakes Michigan and Superior. Phil. Trans. Roy. Soc. London A, 281: 1–61.

    Article  Google Scholar 

  • Platzman, G. W. (1972) Two dimensional free oscillations in

    Google Scholar 

  • natural basins. J. Phys. Oceanogr. 2, 117–138 Proudman, J. 1953. Dynamical Oceanography. Wiley, New York, NY. 409 pp.

    Google Scholar 

  • Rao, D. B., and T. S. Murty. (1970). Calculation of the steady-state wind-driven circulation in Lake Ontario. Arch. Meteor. Geophys. Bioklim., A19: 195–210.

    Article  Google Scholar 

  • Rao, D. B., and D. J. Schwab. (1976). Two dimensional normal modes in arbitrary enclosed basins or a rotating earth: Application to Lakes Ontario and Superior. Phil Trans. Roy. Soc. London A, 281: 63–96.

    Article  Google Scholar 

  • Robinson, A. R. (1964) Continental Shelf Waves and the response of sea level to weather systems. J. Geophys. Res. 69, 367–368.

    Article  Google Scholar 

  • Sato, G. K., and C. H. Mortimer. (1975). Lake Currents and Temperatures Near the Western Shore of Lake Michi-gan. Univ. Wisconsin-Milwaukee, Center for Great Lakes Studies, Spec. Rep. No. 22.

    Google Scholar 

  • Simons, T. J. (1974). Verification of numerical models of Lake Ontario: Part I. Circulation in spring and early summer. J. Phys. Oceanogr., 4: 507–523.

    Article  Google Scholar 

  • Simons, T. J. (1975). Verification of numerical models of Lake Ontario. II. Stratified circulations and temperature changes. J. Phys. Oceanogr., 5: 98–110.

    Article  Google Scholar 

  • Sweers, H. E. (1969). Structure, Dynamics and Chemistry of Lake Ontario. Marine Sciences Branch, Dept. Energy, Mines and Resources, Ottawa. 227 pp.

    Google Scholar 

  • Verber, J. L. (1966). Inertial currents in the Great Lakes. Pp.375–379. Proc. 9th Conf. Great Lakes Res.

    Google Scholar 

  • Weiler, H. S. (1968). Current measurements in Lake Ontario in 1967. Pp. 500–511. Proc. 11th Conf. Great Lakes Res. Int. Assoc. Great Lakes Res.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1978 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Csanady, G.T. (1978). Water Circulation and Dispersal Mechanisms. In: Lerman, A. (eds) Lakes. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1152-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1152-3_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1154-7

  • Online ISBN: 978-1-4757-1152-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics