Lakes pp 325-339 | Cite as

Stable Isotope Studies of Lakes

  • F. J. PearsonJr.
  • Tyler B. Coplen


There are natural variations in the ratios of the stable isotopes of many light elements. Isotope ratio differences in substances containing hydrogen (2H/1H, usually written D/H), carbon (13C/12C), nitrogen (15N/14N) oxygen (18O/16O), and sulfur (34S/32S) have been used or have potential use in studies of various aspects of lakes. We give here a general overview of the processes which bring about changes in stable isotope ratios, using studies of lakes as examples of their operation. We have by no means exhausted the literature on isotopes in lake studies.


Isotopic Composition Stable Isotope Isotope Ratio Carbon Isotope Oxygen Isotope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bigeleisen, J., and M. G. Mayer. (1947). Isotopic exchange reactions. J. Chem. Phys.,15: 261–267.CrossRefGoogle Scholar
  2. Bokhoven, C., and H. J. Theeuwen. (1966). Determination of the abundance of carbon and nitrogen isotopes in Dutch coals and natural gases. Nature, 211: 927–929.CrossRefGoogle Scholar
  3. Bonner, F. T., E. Roth, O. A. Schaeffer, and S. O. Thompson. (1961). Chlorine-36 and deuterium study of Great Basin lake waters. Geochim. Cosmochim. Acta, 25: 261266.Google Scholar
  4. Bottinga, Y. (1969). Calculated fractionation factors for carbon and hydrogen isotope exchange in the system calcite-carbon dioxide-graphite-methane-hydrogen-water vapor. Geochim. Cosmochim. Acta, 33: 49–64.CrossRefGoogle Scholar
  5. Cheng, H. H., J. M. Bremner, and A. P. Edwards. (1964). Variations of nitrogen-15 abundance in soils. Science, 146: 1574–1575.PubMedCrossRefGoogle Scholar
  6. Clayton, R. N., J. R. Goldsmith, K. J. Karel, T. K. Mayeda, and R. C. Newton. (1974). Limits on the effect of pressure on isotopic fractionation. Geochim. Cosmochim. Acta,39: 1197–1201.CrossRefGoogle Scholar
  7. Cline, D. J., and I. R. Kaplan. (1975). Isotopic fractionation of dissolved nitrate during denitrification in the eastern tropical North Pacific Ocean. Marine Chem., 3: 271–299.CrossRefGoogle Scholar
  8. Cook, F. D., R. P. Wellman, and H. R. Krouse. (1973). Nitrogen isotope fractionation in the nitrogen cycle. Pp. 49–64. In: E. Ingerson (ed.), Proc. Symp. on Hydro-geochemistry and Biogeochemistry, Tokyo (Washington, D. C., The Clark Co. )Google Scholar
  9. Coplen, T. B., and B. B. Hanshaw. (1973). Ultrafiltration by a compacted clay membrane. I. Oxygen and hydrogen fractionation. Geochim. Cosmochim. Acta, 37: 22952310.Google Scholar
  10. Covich, A., and M. Stuiver. (1974). Changes in oxygen-18 as a measure of long-term fluctuations in tropical lake levels and molluscan populations. Limnol. Oceanogr., 19: 682691.Google Scholar
  11. Craig, H. (1953). The geochemistry of the stable carbon isotopes. Geochim. Cosmochim. Acta, 3: 53–92.CrossRefGoogle Scholar
  12. Craig, H. (1961). Isotopic variations in meteoric waters. Sci-ence, 133: 1702–1703.Google Scholar
  13. Craig, H., and L. I. Gordon. (1965). Deuterium and oxygen-18 variations in the ocean and the marine atmosphere. Pp. 9–130. In: E. Tongiorgi (ed.), Stable Isotopes in Oceanographic Studies and Paleotemperatures. Labor-atorio de Geologia Nucleare, Pisa.Google Scholar
  14. Dansgaard, W. (1964). Stable isotopes in precipitation. Tel-lus, 16: 436–468.CrossRefGoogle Scholar
  15. Dansgaard, W., and H. Tauber. (1969). Glacier oxygen-18 content and Pleistocene ocean temperatures. Science, 166: 499–502.PubMedCrossRefGoogle Scholar
  16. Deevey, E. S., and N. Nakai. (1962). Fractionation of sulfur isotopes in lake waters. Pp. 169–178. In: M. L. Jensen (ed.), Symposium on Biogeochemistry of Sulfur Isotopes. Yale Univ., New Haven, CT.Google Scholar
  17. Deevey, E. S., N. Nakai, and M. Stuiver. (1963). Fractionation of sulfur and carbon isotopes in a meromictic lake. Science, 139:407–408Google Scholar
  18. Deevey, E. S., and M. Stuiver. (1964). Distribution of natural isotopes of carbon in Linsley Pond and other New England lakes. Limnol. Oceanogr., 9: 1–11.CrossRefGoogle Scholar
  19. Deevey, E. S., M. Stuiver, and N. Nakai. (1964). Isotopes of carbon and sulfur as traces of lake metabolism. Verh. Int. Verein. Limnol., 15: 284–288.Google Scholar
  20. Delwiche, C. C. (1970). The nitrogen cycle. Sci. Am.,223:137–146Google Scholar
  21. Delwiche, C. C., and P. L. Steyn. (1970). Nitrogen isotope fractionation in soils and microbial reactions. J. Environ. Qual., 4: 929–935.Google Scholar
  22. Deuser, W. G., E. T. Degens, G. R. Harvey, and M. Rubin. (1973). Methane in Lake Kivu: new data on its origin. Science, 181:151–154Google Scholar
  23. Dincer, T. (1968). The use of oxygen-18 and deuterium concentrations in the water balance of lakes. Water Re-sources Res., 4:1289–1306Google Scholar
  24. Dole, M., G. A. Lane, D. P. Rudd, and D. A. Zaukelies. (1954). Isotopic composition of atmospheric oxygen and nitrogen. Geochim. Cosmochim. Acta, 6: 65–78.CrossRefGoogle Scholar
  25. Edwards, A. P. (1973). Isotopic tracer techniques for identification of sources of nitrate pollution. J. Environ. Qual., 2:383–387Google Scholar
  26. Edwards, A. P. (1974). Isotope effects in relation to the interpretation of I5N/14N ratios in tracer studies. Pp. 455–468. In: Isotope Ratios as Pollutant Sources and Behavior Indicators. Internat. Atomic Energy Agency, Vienna.Google Scholar
  27. Eichmann, R., A. Plate, W. Behrens, and H. Kroepelin. (1971). Das isotopenverhältnis des Stickstoffs in einigen erdgasen Erdölgesen und Erdölen Nordwestdeutschlands. Erdöl Kohle, 24:2.Google Scholar
  28. Epstein, S., and T. Mayeda. (1953). Variations of 018 content of waters from natural sources. Geochim. Cosmochim. Acta, 4: 213–224.CrossRefGoogle Scholar
  29. Epstein, S., R. Buchsbaum, H. A. Lowenstam, and H. C. Urey. (1953). Revised carbonate-water temperature scale. Geol. Soc. Am. Bull., 62: 417–426.CrossRefGoogle Scholar
  30. Fontes, J. Ch., and R. Gonfiantini. (1967). Comportment isotopic cours de l’evaporation de deux bassins Sahariens. Earth Planet. Sci. Lett., 3: 258–266.CrossRefGoogle Scholar
  31. Fontes, J. Ch., and R. Gonfiantini. (1970). Composition isotopique et origine de la vapeur d’eau atmospherique dans la region de Lac Léman. Earth Planet. Sci. Lett., 7: 325–329.CrossRefGoogle Scholar
  32. Fontes, J. Ch., R. Gonfiantini, and M. A. Roche. (1970). Deuterium et oxygene-18 dans les eaux du Lac Tchad. Pp. 387–404. In: Isotope Hydrology 1970. Internat. Atomic Energy Agency, Vienna.Google Scholar
  33. Freyer, H. D., and A. I. M. My. (1975). Nitrogen-15 studies on identifying fertilizer excess in environmental systems. Pp. 21–33. In: Isotope Ratios as Pollutant Sources and Behavior Indicators. Internat. Atomic Energy Agency, Vienna.Google Scholar
  34. Friedman, I. (1953). Deuterium content of natural water and other substances. Geochim. Cosmochim. Acta, 4: 89103.CrossRefGoogle Scholar
  35. Friedman, I., and J. R. O’Neil. (1977). Compilation of stable isotope fractionation factors of geochemical interest. Chapter KK. Pp. KK1–KK12. In: Data of Geochemistry, 6th ed.. U.S. Geol. Surv. Prof. Paper 440-KK.Google Scholar
  36. Friedman, I., and A. C. Redfield. (1971). A model of the hydrology of the lakes of the lower Grand Coulee, Washington. Water Resources Res., 7: 874–898.CrossRefGoogle Scholar
  37. Friedman, I., D. R. Norton, D. B. Carter, and A. C. Redfield. (1956). The deuterium balance of Lake Maracaibo. Limnol. Oceanogr., 1: 239–246.CrossRefGoogle Scholar
  38. Friedman, I., A. C. Redfield, B. Schoen, and J. Harris. (1964). The variation of the deuterium content of natural waters in the hydrologic cycle. Rev. Geophys., 2: 177224.Google Scholar
  39. Friedman, I., G. I. Smith, and K. G. Hardcastle. (1976). Studies of Quaternary saline lakes-II. Isotopic and compositional changes during dessication of the brines in Owens Lake, California, 1969–1971. Geochim. Cosmochim. Acta. 0: 501–511.CrossRefGoogle Scholar
  40. Fritz, P., and S. Poplawski. (1974). 180 and 18C in the shells of freshwater molluscs and their environments. Earth Planet. Sci. Lett., 24: 91–98.Google Scholar
  41. Fritz, P., T. W. Anderson, and C. F. M. Lewis. (1975). Late Quaternary climatic trends in history of Lake Erie from stable isotope studies. Science, 190: 267–269.Google Scholar
  42. Games, L. M., and J. M. Hayes. (1976). On the mechanisms of CO2 and CH4 production in natural anaerobic environments. In: J. O. Nriagu (ed.), Environmental Biochemistry. Ann Arbor Science Publishers, Ann Arbor, MI.Google Scholar
  43. Garlick, G. D. (1969). The stable isotopes of oxygen. Section 8-B. Pp. 8-B-1–8-B-26. In: K. J. Wedepohl (ed.), Handbook of Geochemistry. Springer-Verlag, New York, NY.Google Scholar
  44. Gat, J. R. (1970). Environmental isotope balance of Lake Tiberias. Pp. 109–127. In: Isotope Hydrology 1970. Internat. Atomic Energy Agency, Vienna.Google Scholar
  45. Goldhaber, M. B., and I. R. Kaplan. (1974). The sulfur cycle. Pp. 569–655. In: E. D. Goldberg (ed.), The Sea, Vol. 5, Marine Chemistry. John Wiley and Sons, New York, NY.Google Scholar
  46. Goldhaber, M. B., and I. R. Kaplan. (1975). Controls and consequences of sulfate reduction rates in recent marine sediments. Soil Sci., 119: 42–55.CrossRefGoogle Scholar
  47. Gonfiantini, R. (1965). Effetti isotopici nel l’evaporazione di acque salate. Atti della Soc. Tosc. Sc. Nat., Series A, 74:1–22Google Scholar
  48. Gonfiantini, R. (1977). Consultants’ meeting on stable isotope standards and intercalibration in hydrology and in geochemistry, final report. Internat. Atomic Energy Agency 77–3977, Vienna. 22 pp.Google Scholar
  49. Gonfiantini, R., S. Borse, G. Ferrara, and C. Panichi. (1973). Isotopic composition of waters from the Danakil depression (Ethiopia). Earth Planet. Sci. Lett., 18:13–21Google Scholar
  50. Harrison, A. G., and H. G. Thode. (1957). The kinetic isotope effect in the chemical reduction of sulfate. Trans. Faraday Soc., 53:1648–1651Google Scholar
  51. Hatch, M. D., and C. R. Slack. (1970). Photosynthetic CO2 fixation pathways. Ann. Rev. Plant Physiol., 21141:162.Google Scholar
  52. Hauck, R. D., W. V. Bartholomew, J. M. Bremner, F. E. Broadbent, H. H. Cheng, A. P. Edwards, D. R. Keeney, J. O. Legg, S. R. Olson, and L. K. Porter. (1972). Use of variations in natural N-isotope abundance for environmental studies. A questionable approach. Science, 177: 453–456.PubMedCrossRefGoogle Scholar
  53. Hendy, C. H., and A. T. Wilson. (1968). Paleoclimatic data from speleothems. Nature, 219: 48–51.CrossRefGoogle Scholar
  54. Hoefs, J. (1973). Stable Isotope Geochemistry. Springer-Verlag, New York, NY. 140 pp.Google Scholar
  55. Hoering, T. (1956). Variations in the nitrogen isotope abun-dance. Proc. 2nd Conference on Nuclear Processes in Geologic Settings, p. 85.Google Scholar
  56. Hoering, T. (1957). The isotopic composition of the ammonia and nitrate ion in rain water. Geochim. Cosmochim. Acta12:97–102.Google Scholar
  57. Hoering, T. C. (1958). Cosmological and geological implications of isotope ratio variations. P. 161. In: Isotopic Abundances of Lighter Elements. U.S. National Academy Science-National Research Council Publication 572.Google Scholar
  58. Hoering, T., and H. E. Moore. (1958). The isotopic composition of the nitrogen in natural gases and associated crude oils. Geochim. Cosmochim. Acta, 13: 225–232.CrossRefGoogle Scholar
  59. Holzer, W. T., and I. R. Kaplan. (1966). Isotope geochemis- try of sedimentary sulfates. Chem. Geol., 1: 93–135.CrossRefGoogle Scholar
  60. I.A.E.A. (1968). Atmosphere-surface water interrelations: Evaporation from lakes. Chap. 1. In: Guidebook on Nuclear Techniques in Hydrology. Internat. Atomic Energy Agency, Technical Report Series No. 91. 213 pp.Google Scholar
  61. I.A.E.A. (1969). Environmental Isotope Data No. 1: World Survey of Isotope Concentration in Precipitation (1953-1963). Internat. Atomic Energy Agency, Vienna, Technical Report Series No. 96. 421 pp.Google Scholar
  62. I.A.E.A. (1970). Environmental Isotope Data No. 2: World Survey of Isotope Concentration in Precipitation (1964-1965). Internat. Atomic Energy Agency, Vienna, Technical Report Series No. 117. 402 pp.Google Scholar
  63. I.A.E.A. (1971). Environmental Isotope Data No. 3: World Survey of Isotope Concentration in Precipitation (19661967). Internat. Atomic Energy Agency Vienna Technical Report Series No. 129. 402 pp.Google Scholar
  64. I.A.E.A. (1973). Environmental Isotope Data No. 4: World Survey of Isotope Concentration in Precipitation (1968-1969). Internat. Atomic Energy Agency, Vienna, Technical Report Series No. 147. 334 pp.Google Scholar
  65. I.A.E.A. (1975). Environmental Isotope Data No. 5: World Survey of Isotope Concentration in Precipitation (1970-1971). Internat. Atomic Energy Agency, Vienna, Technical Report Series No. 165. 309 pp.Google Scholar
  66. Injerd, W. G. (1973a). Determination of non-exchangable ammonium in marine clays 2. Isotope-ratio analysis of ammonium and organic nitrogen. Univ. of California, Los Angeles, Calif., Rep. Chem. 199 JW.Google Scholar
  67. Injerd, W. G. (1973b). Determination of non-exchangable ammonium in marine clays 3. Depth profile of Gulf of California and Saanich Inlet B.C. cores. Univ. of Cali- fornia, Los Angeles, Calif., Rep. Chem. 199W. 22 pp.Google Scholar
  68. Jones, D. C. (1973). An investigation of the nitrate problem in Runnels County Texas. U.S. Environmental Protection Agency Technical Series EPA-R2–73-267. 214 pp.Google Scholar
  69. Junk, G., and H. S. Svec. (1958). The absolute abundance of the nitrogen isotopes in the atmosphere and compressed gas from various sources. Geochim. Cosmochim. Acta, 14: 234–243.CrossRefGoogle Scholar
  70. Kaplan, I. R., and S. C. Rittenberg, (1964). Microbiological fractionation of sulphur isotopes: J. Gen. Microbiol., 34: 195–212.PubMedCrossRefGoogle Scholar
  71. Keeling, C. D. (1958). The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. Geochim. Cosmochim. Acta13:322–334.Google Scholar
  72. Keeney, D. R. (1973). The nitrogen cycle in sediment-water systems. J. Environ. Qual., 2: 15–29.CrossRefGoogle Scholar
  73. Kohl, D. H., G. B. Shearer, and B. Commoner. (1971). Fertilizer nitrogen: Contribution to nitrate in surface water in a corn belt watershed. Science, 174: 1331–1334.PubMedCrossRefGoogle Scholar
  74. Koyama, T., M. Nikaido, T. Tornino, and H. Hayakawa. (1973). Decomposition of organic matter in lake sedi- ments. Pp. 512–535. In: E. Ingerson (ed.), Proc. of a Symp. on Hydrogeochemistry and Biogeochemistry, To- kyo ( Washington, D.C., the Clark Co. ).Google Scholar
  75. Kreitler, C. W., and D. C. Jones. (1975). Natural soil nitrate: the cause of nitrate contamination of groundwater in Runnels County, Texas. Ground Water, 103: 53–61.CrossRefGoogle Scholar
  76. Lloyd, R. M. (1966). Oxygen isotope enrichment of seawater by evaporation. Geochim. Cosmochim. Acta, 30: 80 1814.Google Scholar
  77. Lloyd, R. M. (1968). Oxygen isotope behavior in the sulfate-water system. J. Geophys. Res., 73:6099–6110.Google Scholar
  78. Majzoub, M. (1971). Fractionnement en oxygen-18 et en deuterium entre l’eau et sa vapeur. J. Chim. Phys., 68: 1423–1436.Google Scholar
  79. Matsuo, S., I. Friedman, and G. I. Smith. (1972). Studies of Quaternary saline lakes-I. Hydrogen isotope fractionation in saline minerals. Geochim. Cosmochim. Acta, 36: 427–435.CrossRefGoogle Scholar
  80. McCrea, J. M. (1950). On the isotope chemistry of carbonates and a paleotemperature scale. J. Chem. Phys., 18: 849–857.CrossRefGoogle Scholar
  81. McKinney, C. R., J. M. McCrea, H. A. Allen, S. Epstein, and H. C. Urey. (1950). Improvements in mass spectrometers for the measurement of small differences in isotope abundance ratios. Rev. Sci. Inst., 21: 724–730.CrossRefGoogle Scholar
  82. Merlivat, L. (1970). L’Etude quantitative de bilans deracs a l’aid des concentrations en deuterium et oxygene-18 dans l’eau. Pp. 89–107. In: Isotope Hydrology 1970. Internat. Atomic Energy Agency, Vienna.Google Scholar
  83. Miyaka, Y., and E. Wada. (1967). The abundance ratio of ‘sN/14N in marine environments. Records Oceanogr. Works Japan, 9: 37–53.Google Scholar
  84. Mook, W. G. (1970). Stable carbon and oxygen isotopes of natural waters in the Netherlands. Pp. 163–190. In: Isotope Hydrology 1970. Internat. Atomic Energy Agency, Vienna.Google Scholar
  85. Mook, W. G., J. C. Bommerson, and W. H. Staverman. (1974). Carbon isotope fractionation between dissolved bicarbonate and gaseous carbon dioxide. Earth Planet. Sci. Lett.22:169–176.Google Scholar
  86. Nier, A. O. C. (1947). A mass spectrometer for isotope and gas analysis. Rev. Sci. Inst., 18: 398–411.CrossRefGoogle Scholar
  87. Nier, A. O. (1950). A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon, and potassium. Phys. Rev., 77: 789.CrossRefGoogle Scholar
  88. Nissenbaum, A., and I. R. Kaplan. (1976). Sulfur and carbon isotopic evidence for biogeochemical processes in the Dead Sea ecosystem. Pp. 309–325. In: J. O. Nriagu (ed.), Environmental Biogeochemistry, Vol. 1, Carbon, Nitrogen, Phosphorus, Sulfur and Selenium Cycles. Ann Arbor Science Pub., Ann Arbor, MI.Google Scholar
  89. Nissenbaum, A., B. J. Presley, and I. R. Kaplan. (1972). Early diagenesis in a reducing fjord, Saanich Inlet, British Columbia-I. Chemical and isotopic changes in major components of interstitial water. Geochem. Cosmochim. Acta, 36:1007–1027Google Scholar
  90. Oana, S., and E. S. Deevey. (1960). Carbon-13 in lake waters and its possible bearing on paleolimnology. Am. J. Sci., 258-A:253–272.Google Scholar
  91. O’Neil, J. R., and R. L. Hay. (1973). ‘sO/160 ratios in cherts associated with the saline lake deposits of East Africa. Earth Planet. Sci. Lett., 19: 257–266.Google Scholar
  92. O’Neil, J. R., R. N. Clayton, and T. K. Mayeda. (1969). Oxygen isotope fractionation in divalent metal carbonates. J. Chem. Phys., 51: 5547–5558.CrossRefGoogle Scholar
  93. Pang, P. C., and J. O. Nriagu. (1976). Distribution and isotopic composition of nitrogen in Bay of Quinte (Lake Ontario) sediments. Chem. Geol., 18: 93–105.CrossRefGoogle Scholar
  94. Pang, P. C., and J. O. Nriagu. (1977). Isotopic variations of the nitrogen in Lake Superior. Geochim. Cosmochim. Acta, 41: 811–814.CrossRefGoogle Scholar
  95. Park, R., and S. Epstein. (1960). Carbon isotope fractionation during photosynthesis. Geochim. Cosmochim. Acta, 21:110–126. Park, R., and S. Epstein. (1961). Metabolic fractionation of 13C and 12C in plants. Plant Physiol., 36:133–138Google Scholar
  96. Rennie, D. A., and E. A. Paul. (1975). Nitrogen isotope ratios in surface and sub-surface soil horizons. Pp. 441–453. In: Isotope Ratios as Pollutant Source and Behavior Indicators. Internat. Atomic Energy Agency, Vienna.Google Scholar
  97. Roche, M. A. (1975). Geochemistry and natural ionic and isotopic tracing; two complementary ways to study the natural salinity regime of the hydrological system of Lake Chad. J. Hydrol., 26:153–171Google Scholar
  98. Rosenfeld, W., and S. Silverman. (1959). Carbon isotope fractionation in bacterial production of methane. Science, 130:1658.Google Scholar
  99. Sakai, H. (1957). Fractionation of sulfur isotopes in nature. Geochim. Cosmochim. Acta, 12: 150–169.CrossRefGoogle Scholar
  100. Scalan, R. S. (1959). The Isotopic Composition, Concentration and Chemical State of Nitrogen in Igneous Rocks. Ph.D. Thesis, Univ. Arkansas.Google Scholar
  101. Schwarcz, H. P. (1969). The stable isotopes of carbon. Section 6-B. Pp. 6-B-1–6-B-16. In: K. H. Wedepohl (ed.), Handbook of Geochemistry. Springer-Verlag, New York, NY.Google Scholar
  102. Shearer, G., J. Duffy, D. H. Kohl, and B. Commoner. (1974). A steady-state model of isotopic fractionation accompanying nitrogen transformations in soil. Soil Sci. Soc. Am. Proc., 38:315–322Google Scholar
  103. Sheppard, S. M. F., R. L. Nielsen, and H. P. Taylor. (1969). Oxygen and hydrogen isotope ratios of clay minerals from porphyry copper deposits. Econ. Geol., 64: 755777.Google Scholar
  104. Stewart, M. K., and I. Friedman. (1975). Deuterium fractionation between aqueous salt solutions and water vapor. J. Geophys. Res., 80:3812–3818Google Scholar
  105. Sofer, Z., and J. R. Gat. (1972). Activities and concentrations of oxygen-18 in concentrated aqueous salt solutions: Analytical and geophysical implications. Earth Planet. Sci. Lett., 15: 232–238.CrossRefGoogle Scholar
  106. Sofer, Z., and J. R. Gat. (1975). The isotopic composition of evaporating brines: Effects of the isotopic activity ratio in saline solutions. Earth Planet. Sci. Lett., 26:179–186Google Scholar
  107. Stiller, M., and M. Magaritz. (1974). Carbon-13 enriched carbonate in interstitial waters of Lake Kinneret sediments. Limnol. Oceanogr., 19: 849–853.CrossRefGoogle Scholar
  108. Stuiver, M. (1968). Oxygen-18 content of atmospheric precipitation during last 11,000 years in Great Lakes region. Science, 162: 994–997.PubMedCrossRefGoogle Scholar
  109. Stuiver, M. (1970). Oxygen and carbon isotope ratios of fresh-water carbonates as climatic indicators. J. Geophys. Res., 75: 5247–5257.CrossRefGoogle Scholar
  110. Stuiver, M. (1975). Climate versus changes in 13C content of the organic component of lake sediments during the Late Quaternary. Quat. Res., 5:251–262.Google Scholar
  111. Takahashi, T., W. Broecker, Y. H. Li, and D. Thurber. (1968). Chemical and isotopic balances for a meromictic lake. Limnol. Oceanogr., 13: 272–292.CrossRefGoogle Scholar
  112. Taube, H. (1954). Use of oxygen isotope effects in the study of hydration of ions. J. Phys. Chem., 58:523-Thode, H. G., M. Shima, C. E. Rees, and K. V. Krishnamurty. (1965). Carbon-13 isotope effects in systems containing carbon dioxide, bicarbonate, carbonate, and metal ions. Can. J. Chem., 43: 582–595.Google Scholar
  113. Troughton, J. H. (1972). Carbon isotope fractionation by plants. Pp. E39 - E57. In: T. A. Rafter and T. Grant-Taylor (eds.), Proc. 8th Internat. Conf. on Radiocarbon Dating. Roy. Soc. New Zealand, Wellington.Google Scholar
  114. Truesdell, A. H. (1974). Oxygen isotope activities in concentrations in aqueous salt solutions at elevated temperatures. Earth Planet. Sci. Lett., 23: 387–396.CrossRefGoogle Scholar
  115. Urey, H. C. (1947). The thermodynamic properties of ionic substances. J. Chem. Soc., 562–581.Google Scholar
  116. Wada, E., and A. Hattori. (1976). Natural abundance of 15N in particulate organic matter in the North Pacific Ocean. Geochim. Cosmochim. Acta, 40: 249–251.CrossRefGoogle Scholar
  117. Welhan, J. A., and P. Fritz. (1977). Evaporation pan isotopic behavior as an index of isotopic evaporation conditions. Geochim. Cosmochim. Acta, 41: 682–686.CrossRefGoogle Scholar
  118. Wellman, R. P., F. D. Cook, and H. R. Krouse. (1968). Nitrogen-15: microbiological alteration of abundance. Science, 161:269–270Google Scholar
  119. Zimmermann, U., and D. H. Ehhalt. (1970). Stable isotopes in study of water balance in Lake Neusiedl, Austria. Pp. 129–138. In: Isotope Hydrology 1970. Internat. Atomic Energy Agency, Vienna.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1978

Authors and Affiliations

  • F. J. PearsonJr.
  • Tyler B. Coplen

There are no affiliations available

Personalised recommendations