Skip to main content

Black Holes and the Unification of Asymmetries

  • Chapter
Cosmology, Physics and Philosophy
  • 222 Accesses

Abstract

Of all the conceptions of cosmology and astrophysics, perhaps the most intriguing is the black hole (or “frozen star,” as it is sometimes called): a hole in space with a definite edge, over which anything can fall in — but nothing can escape, because of a gravitational field so strong that even radiation is irreversibly trapped and held by it; a thermodynamic sink which drastically curves space and twists time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References (To Part III)

  1. Gal-Or, B., Found. Phys., 6, 407 (1976); 6, 623 (1976).

    Article  Google Scholar 

  2. Gal-Or, B., ed., Modern Developments in Thermodynamics, Wiley, N.Y. (1974). Stuart, E. B., Gal-Or, B., and Brainard, A. J., eds., A Critical Review of Thermodynamics, Mono Book, Baltimore (1970) (Proceedings of International Symposium, sponsored by NSF, “A Critical Review of the Foundations of Relativistic and Classical Thermodynamics,” at Pittsburgh, Pa., April 7–9 (1969).

    Google Scholar 

  3. Gold, T., in Recent Developments in General Relativity, Pergamon Press, N.Y. (1962), p. 225; in The Nature of Time (Gold, T., ed.), Cornell University Press, N.Y. (1967), pp. 1, 128, 229; in Ref. 1, pp. 63.

    Google Scholar 

  4. Narlikar, J. V., in The Nature of Time (Gold, T., ed.), Cornell University Press, N.Y. (1967), pp. 25, 28, 62; Pure and Appl. Chem. 22, 449, 543 (1970); with Hoyle, F., Nature 222, 1040 (1969); Proc. Roy. Soc. A 277, 1 (1963); Ann. Phys. 54, 207 (1969), 62, 44 (1971).

    Google Scholar 

  5. Gal-Or, B., Science 176, 11–17 (1972); Nature 230, (1971); 234, 217 (1971).

    Google Scholar 

  6. Gal-Or, B., “Entropy, Fallacy, and the Origin of Irreversibility,” Annals, N.Y. Acad. Sci. 196 (A6), pp. 305–325, October 4 (1972) [N.Y. A.S. Award Paper (1971)].

    Google Scholar 

  7. Gal-Or, B., “The New Philosophy of Thermodynamics,” in Entropy and Information in Science and Philosophy (Zeman, J., ed.), Czechoslovak Academy of Sciences, Elsevier (1974). Space Sci. Review; In press.

    Google Scholar 

  8. Ellis, H. G., Found. Phys., 4, 311 (1974).

    Article  Google Scholar 

  9. Rosenfeld, L., in The Nature of Time (Gold, T., ed.), Cornell University Press, N.Y. (1967), pp. 135, 187, 191, 194, 227, 230, 242.

    Google Scholar 

  10. Bergmann, P. G., in The Nature of Time (Gold, T., ed.), Cornell University Press, N.Y. (1967), pp. 40, 185, 189, 233, 241.

    Google Scholar 

  11. Beauregard, O. Costa de, in Ref. 2, pp. 75.

    Google Scholar 

  12. Aharony, A. (with Ne’eman, Y.), Int. Jour. Theoret. Phys. 3, 437 (1970); Lettere al Nuovo Cimento, Serie I, 4, 862 (1970) in Ref. 1, pp. 95.

    Google Scholar 

  13. Landau, L. D. and Lifshitz, E. M., Statistical Physics, Addison-Wesley, Reading, Pa. pp. 13, 29 (1969).

    Google Scholar 

  14. Prigogine, I., in A Critical Review of Thermodynamics (Stuart, Gal-Or and Brainard, eds.), Mono Book, Baltimore, p. 461 (1967).

    Google Scholar 

  15. Tolman, R. C., Relativity Thermodynamics and Cosmology, Oxford Press (1933), pp. 221, 301, 323, 328, 395, 421, 440.

    Google Scholar 

  16. Narlikar, J. V., in Ref. 1, pp. 53.

    Google Scholar 

  17. There are authors who, unaware of the fundamental problem, hopelessly seek (cf. also [391) the origin of irreversibility in the Hamiltonian and the interaction terms in it [cf., e.g., Hove, L. van, Physica 21,517 (1955); 25,269 (1969)]; or in the coarse graining of phase space, which is required to take account of the fact that all measurements are macroscopic [cf., e.g., Landsberg, P. T., Thermodynamics with Quantum Statistical Illustrations,Interscience (1961); Proc. Roy. Soc. A262,100 (1961); or in passage to the limit of an infinite number of degrees of freedom [cf., e.g., Balescu, R. in [2] p. 473; Physica 36,433 (1967); Phys. Lett. 27A,249 (1967)]; or in interpretations of the Liouville equation [cf., e.g., Prigogine, I., in [2], p. 1; or in the impossibility of completely isolating a system from the rest of the universe [cf., e.g., Blatt, J. M., Prog. Theoret. Phys. 22,745 (1959)].

    Google Scholar 

  18. Misner, C. W., Phys. Rev. 186, 1328 (1969).

    Article  MATH  Google Scholar 

  19. Beauregard, O. Costa de, Le Second Principe de la Science du Temps, Editions du Seuil, Paris (1963); Pure and Appl. Chem. 22, 540 (1970).

    Google Scholar 

  20. Adams, E. N., Phys. Rev. 120, 675 (1960).

    Article  MathSciNet  MATH  Google Scholar 

  21. Beauregard, O. Costa de, in Proceedings of the International Congress for Logic, Methodology and the Philosophy of Science (Bar-Hillel, Y., ed.), North Holland, 313 (1964).

    Google Scholar 

  22. Gal-Or, B., Science 178, 1119 (1972).

    Article  Google Scholar 

  23. Feigl, H. and Maxwell, G., eds., Current Issues in the Philosophy of Science, Holt, Rinehart and Minneapolis (1962).

    Google Scholar 

  24. Grunbaum, A., Philosophical Problems of Space and Time, Knopf, N.Y. (1963); (Gold, T., ed.), Cornell University Press, N.Y., p. 149 (1967).

    Google Scholar 

  25. Hogarth, J. E. in The Nature of Time (Gold, T., ed.), Cornell University Press, N.Y., p. 7 (1967).

    Google Scholar 

  26. Layzer, D., in The Nature of Time ( Gold, T., ed.), Cornell University Press, N.Y. (1967).

    Google Scholar 

  27. Mehlberg, H., in Current Issues in the Philosophy of Science (Feigl and Maxwell, eds.), Holt, Rinehart and Winston, N.Y., p. 105 (1961).

    Google Scholar 

  28. Ne’eman, Y. in Ref. 1, pp. 91.

    Google Scholar 

  29. Penrose, O. and Percival, I. C., Proc. Phys. Soc. 79, Part 3, No. 509, p. 605 (1962).

    MathSciNet  Google Scholar 

  30. Prigogine, I., in [2], pp. 3, 203, 461, 505.

    Google Scholar 

  31. Reichenbach, H., The Direction of Time, University of California Press, Berkeley (1956); The Philosophy of Space and Time, Dover, N.Y. (1958).

    Google Scholar 

  32. Tisza, L., in [2], pp. 107, 206, 510.

    Google Scholar 

  33. Watanabe, S., in The Voices of Time (Fraser, J. T., ed.), George Braziller, N.Y. 1966, p. 543; Progr. Theoret. Phys. (Kyoto) Suppl., Extra No., p. 135 (1965).

    Google Scholar 

  34. Wheeler, J. A., in The Nature of Time (Gold, T., ed.), Cornell University Press, N.Y. 1967, pp. 90, 233, 235.

    Google Scholar 

  35. Whitrow, G. J., The Natural Philosophy of Time, Nelson, London, 1961.

    MATH  Google Scholar 

  36. Loschmidt, J., Wiener Ber. 73, 139 (1876); 75, 67 (1877).

    Google Scholar 

  37. Zermelo, E., Ann. Phys. 57, (1896); 59; 793 (1896).

    Article  MATH  Google Scholar 

  38. Zel’dovich, Y. B., JETP Lett. 12, 307 (1970).

    Google Scholar 

  39. Penrose, O., Foundations of Statistical Mechanics, Pergamon, Oxford 1970.

    MATH  Google Scholar 

  40. Phipps, T. E., Jr., Found. Phys. 3, 435 (1973).

    Article  Google Scholar 

  41. Kovetz, A. and Shaviv, G., Astrophysics and Space Science 6, 396 (1970); 7, 416 (1970).

    Google Scholar 

  42. Dicke, R. H., Phys. Today 20, 55 (1967).

    Article  Google Scholar 

  43. Cox, A. N., “Stellar Absorption Coefficients and Opacities, in Stars and Stellar Systems ( Kuiper, G. P., ed.), Vol. VIII, University of Chicago Press, 1965, pp. 195–263.

    Google Scholar 

  44. Reeves, H., “Stellar Energy Sources,” Ibid. pp. 113–193.

    Google Scholar 

  45. Sciama, D. W., “The Recent Renaissance of Observational Cosmology,” in Relativity and Gravitation ( Kuper, C. G. and Peres, A., eds.), Gordon and Breach, N.Y. 1971, p. 283.

    Google Scholar 

  46. Einstein, A., in Albert Einstein, Philosopher-Scientist ( Paul Arthur Shilpp, ed.), Harper Torchbooks, N.Y. 1959, Vol. II, p. 687.

    Google Scholar 

  47. Sandage, A., Quart. J. Radio-A.str. Soc. 13, 282 (1972).

    Google Scholar 

  48. Weinberg, S., Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity, Wiley, N.Y. 1972, pp. 597.

    Google Scholar 

  49. Ledoux, P., “Stellar Stability,” in Stars and Stellar Systems ( Kuiper, G. P. ed.), Vol. VIII, University of Chicago Press, 1965, pp. 499–574.

    Google Scholar 

  50. Truesdell, C., Rational Thermodynamics, McGraw-Hill, N.Y. 1969, pp. 30, 57, 106, 193.

    Google Scholar 

  51. Gringorten, I. I. and Kantor, A. J., in Handbook of Geophysics and Space Environments ( Valley, S. L. ed.), McGraw-Hill, N.Y. 1965.

    Google Scholar 

  52. Huang, S. S. and Struve, O., “Stellar Rotation and Atmospheric Turbulence,” in Stars and Stellar Systems ( Kuiper, G. P. ed.), Vol. VI, University of Chicago Press, 1960, pp. 321–369.

    Google Scholar 

  53. Bondi, H., in The Nature of Time (Gold, T., ed.), Cornell University Press, N.Y. 1967; Cosmology, Cambridge University Press, 1961.

    Google Scholar 

  54. Heelan, P., Quantum Mechanics and Objectivity, Nijhoff, The Hague 1965, 1, 95 (1970).

    Google Scholar 

  55. Popper, K., in Quantum Theory and Reality ( Bunge, M., ed.), Springer, N.Y. 1967, p. 7.

    Google Scholar 

  56. Bunge, M., Ibid, p. 107.

    Google Scholar 

  57. Motz, L., Ap. J. 112, 362 (1952); Astrophysics and Stellar Structure, Waltham, Mass. 1970.

    Google Scholar 

  58. Katz, A., Principles of Statistical Mechanics, Freeman, San Francisco 1967.

    Google Scholar 

  59. Cocke, W. J., Phys. Rev. 160 (5), 1165 (1967).

    Google Scholar 

  60. Conant, D. R., in A Critical Review of Thermodynamics ( Stuart, E. B., Gal-Or, B. eds.), Mono Book, Baltimore (1970), p. 507.

    Google Scholar 

  61. De Groot, S. R. and Mazur, P., Non-Equilibrium Thermodynamics, North Holland 1962.

    Google Scholar 

  62. Sciama, D. W., Modern Cosmology, Cambridge University Press, N.Y. 1971.

    Google Scholar 

  63. Peebles, P. J. E., Physical Cosmology, Princeton University Press, Princeton 1971.

    Google Scholar 

  64. Sachs, R. G., Science 176, 587 (1972).

    Article  Google Scholar 

  65. Christenson, J. H., Cronin, J. W., Fitch, V. L., and Turlay, R., Phys. Rev. Lett. 13, 138 (1964); Phys. Rev. B. 140, 74 (1965).

    Article  Google Scholar 

  66. Lee, T. D. and Yang, C. N., Phys. Rev. 104, 254 (1956); Wu, C. S., Amber, E., Hayward, R. W., Hoppes, D. D., and Hudson, R. P., Phys. Rev. 105, 1413 (1957).

    Article  MathSciNet  Google Scholar 

  67. Dass, G. V., Prepring TH. 1373-CERN (1971).

    Google Scholar 

  68. Olbers, H. W. M., Bodes Jahrbuch, 110 (1826).

    Google Scholar 

  69. Halley, Edmund, Phil. Trans. Roy. Soc. (London) 31 (1720).

    Google Scholar 

  70. Fowler, W. A. and Hoyle, F. Ap. J. Suppl. 9, 201 (1964).

    Article  Google Scholar 

  71. Colgate, S. A. and White, R. H., Ap. J. 143, 626 (1966).

    Article  Google Scholar 

  72. Arnett, W. D., Canad. J. Phys. 44, 2553 (1966).

    Article  Google Scholar 

  73. Schwartz, R. A., Ann. Phys. 43, 42 (1967).

    Article  Google Scholar 

  74. Rakavy, G., Shaviv, G. and Zinamon, Z., Ap. J. 150, 131 (1967).

    Article  Google Scholar 

  75. Clayton, D. D., Principles of Stellar Evolution and Nucleosynthesis, McGraw-Hill, N.Y. 1968.

    Google Scholar 

  76. Gal-Or, B. et al., Intern. J. Heat and Mass Transfer 14, 727 (1971).

    Article  Google Scholar 

  77. Wheeler, J. A. and Feynman, R. P., Rev. Mod. Phys. 17, 157 (1945).

    Article  Google Scholar 

  78. Feynman, R. P., Rev. Mod. Phys. 20, 367 (1948).

    Article  MathSciNet  Google Scholar 

  79. Feynman, R. P. and Hibbs, A. R., Quantum Mechanics and Path Integrals, McGraw-Hill, N.Y. 1965.

    Google Scholar 

  80. Lemaitre, G., Ann. Soc. Sci. (Bruxelles) 47A, 49 (1927).

    Google Scholar 

  81. Friedmann, A., Zeits f: Physik 10, 377 (1922).

    Article  Google Scholar 

  82. Dudley, H. C., Lettere al Nuovo Cimento 5(3), 231 (1972); Phys. Lett., in press (1972); Nuovo Cimento 4B,68 (1971).

    Google Scholar 

  83. Arnold, V. I. and Avez, A., Problemes Ergodiques de la Mechanics, Benjamin, N.Y. 1968.

    Google Scholar 

  84. Farquhar, I., Ergodic Theory in Statistical Mechanics, Wiley, N.Y. 1964.

    Google Scholar 

  85. Sinai, Y. G., “On the Foundations of the Ergodic Hypothesis for a Dynamical System in Statistical Gechanics,” Soviet Mathematics 4, 1818 (1963).

    MathSciNet  Google Scholar 

  86. Ungarish, M., Internal Report, Technion-Israel Inst. of Tech., Aug. 1972.

    Google Scholar 

  87. Eringen, A. C., in A Critical Review of Thermodynamics, Mono Book (Stuart, E. B., Gal-Or, B., eds. ), Baltimore (1970) p. 483.

    Google Scholar 

  88. Kestin, J. and Rice, J. R., ibid. p. 282.

    Google Scholar 

  89. Bohm, D., Phys. Rev. 85, 166, 180 (1952).

    Article  MathSciNet  Google Scholar 

  90. de Broglie, L., Founvations of Physics, Vol. 1, p. 1, 1970.

    Google Scholar 

  91. Finzi, A., “Is Dissipation of the Energy of Orbital Motion the Source of the Radiant Energy of Novae?.” Technion Prepring Series No. MT-89, Sept. 1971.

    Google Scholar 

  92. Cohen, J. M. and Cameron, A. G. W., Nature 224, 566 (1969).

    Article  Google Scholar 

  93. Ostriker, J. P. and Gunn, J. E., Ap. J. 157, 1395 (1969); 160, 979 (1970).

    Google Scholar 

  94. Finzi, A. and Wolf, R. A., Ap. J. (Letters) 155, 107 (1969); 150, 115 (1967).

    Google Scholar 

  95. Kulsrud, R. M., Ap. J. 163, 567 (1971).

    Article  Google Scholar 

  96. Pacini, F., Nature 219, 145 (1968).

    Article  Google Scholar 

  97. Goldreich, P. and Julian, W. H., Ap. J. 157, 869 (1969).

    Article  Google Scholar 

  98. Zel’dovich, Y. B., in Advances in Astronomy and Astrophysics, Vol. 3, Academic Press, N.Y. 1965, pp. 241–375.

    Google Scholar 

  99. Janossy, L., Theory of Relativity Based on Physical Reality, Akademiai Kiado, Budapest, 1971, pp. 17, 49.

    Google Scholar 

  100. Einstein, A., Verh. d. Schweizer, Nat. Ges. 105, Teil II, pp. 85–93.

    Google Scholar 

  101. Margenau, H., Philosophy of Science 30,1 (1963); 30,138 (1963); Phys. Today 7, 6 (1954).

    Google Scholar 

  102. Heisenberg, W., Physical Principles of Quantum Theory, University of Chicago Press, 1931.

    Google Scholar 

  103. Schulman, L., Phys. Rev.,in press; in Modern Developments in Thermodynamics,Wiley, N.Y., p. 81 (1974).

    Google Scholar 

  104. Witten, L., ed., Gravitation, Wiley, N.Y. 1962.

    MATH  Google Scholar 

  105. Sperber, G., Found. Phys. 4, p. 163 (1974).

    Article  Google Scholar 

  106. Kyrala, A., Ibid, p. 31.

    Google Scholar 

  107. Rothstein, J., Ibid, p. 83.

    Google Scholar 

  108. Nordtvedt, K. L., Science 178, 1157 (1972).

    Article  Google Scholar 

  109. Oboukhov, A. M. and Golitsyn, G. S., Space Research XI, Akademie-Verlag, Berlin 1971, p. 121.

    Google Scholar 

  110. Zel’dovich, Y. B. and Novikov, I. D., Relativistic Astrophysics-I,University of Chicago Press, 1971. 1 l I.

    Google Scholar 

  111. Kantor, W., Found. Phys. 4,105 (1974).

    Google Scholar 

  112. Novotny, E., Introduction to Stellar Atmospheres and Interiors, Oxford University Press 1973.

    Google Scholar 

  113. Paczynsky, B. E., Acta Astron. 20, 47 (1970); Astrophys. Lett. 11, 53 (1972).

    Google Scholar 

  114. Barkat, Z., Ap. J. 163, 433 (1971).

    Article  Google Scholar 

  115. Barkat, Z., Wheeler, J. C., and Buehler, J. R., Ap. J. 171, 651 (1972); Astrophys. Lett. 8, 21 (1971).

    Google Scholar 

  116. Arnett, W. D., Ap. and Space Sci. 5, 180 (1969); Ap. J. 53, 341 (1968).

    Article  Google Scholar 

  117. Wilson, J. R., Ap. J. 163, 209 (1971).

    Article  Google Scholar 

  118. Tsuruta, S. and Cameron, A. G. W., Ap. and Space Sci. 7, 374 (1970); 14, . 79 (1971).

    Google Scholar 

  119. Arnett, W. D., Truran, J. W., and Woolsey, S. E., Ap. J. 16587 (1971).

    Google Scholar 

  120. Hawking, S. W. in 6th Texas Symp. on Relativistic Astrophysics, Annals, New York Academy of Sciences, 224, 268 (1973).

    Google Scholar 

  121. Davies, P. C. W., The Physics of Time Asymmetry, University of California Press, Berkeley, 1974.

    Google Scholar 

  122. Jackiw, Rev. Mod. Phys. 49, 681 (1977); with C. Rebbi, Phys. Rev. Let. 36, 1116 (1976); 37, 122 (1976); Phys. Rev. D 13, 3398 (1976);

    MathSciNet  Google Scholar 

  123. tHooft, G., Phys. Rev. Let. 37, 8 (1976); Nuclear Phys. B79, 276 (1974);

    Google Scholar 

  124. Narlikar, J. V., General Relativity and Cosmology, MacMillan, London, 1979.

    Google Scholar 

  125. Hawking, S. W. and W. Israel, eds., General Relativity, Cambridge, 1979.

    Google Scholar 

  126. M. Rowan-Robinson, Cosmology, 2nd ed. Oxford, 1981.

    Google Scholar 

  127. G. Bath, ed. The State of the Universe, Oxford, 1980.

    Google Scholar 

  128. P. T. Landsberg and D. A. Evans, Mathematical Cosmology: An Introduction, Oxford, 1979.

    Google Scholar 

  129. G. Burbidge and A. Hewitt, eds. Telescopes for the 1980s, Palo Alto: Annual Reviews, 1981.

    Google Scholar 

  130. J. Vervier and R.V.F. Janssens, Spinor Symmetry and supersymmetry, Phys. Lett., 108B: 1, 1982.

    Google Scholar 

  131. L.W. Alvarez, et al, Science, 208, 1095, 1980.

    Article  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Benjamin Gal-Or

About this chapter

Cite this chapter

Gal-Or, B. (1983). Black Holes and the Unification of Asymmetries. In: Cosmology, Physics and Philosophy. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-1149-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1149-3_9

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-1151-6

  • Online ISBN: 978-1-4757-1149-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics