Aromaticity and Electrophilic Aromatic Substitution

  • Francis A. Carey
  • Richard J. Sundberg


The meaning of the word aromaticity has evolved as understanding of the reason for the special properties of benzene and other aromatic molecules has deepened. Originally, aromaticity was associated with a special chemical reactivity.’ The aromatic hydrocarbons were considered to be those unsaturated systems that underwent substitution reactions in preference to addition. Later, the idea of special stability came to play a larger role. Benzene can be shown to be much lower in enthalpy than predicted by summation of the normal bond energies for the C=C, C-C, and C-H bonds present in the Kekulé representation of benzene. Aromaticity is now generally associated with this property of lowered molecular energy. A major contribution to the stability of the aromatic systems is recognized as being due to the delocalization of the electrons in these molecules.


Isotope Effect Kinetic Isotope Effect Electrophilic Substitution Electrophilic Aromatic Substitution Position Selectivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. Aromaticity, Special Publication No. 21, The Chemical Society, London, 1967.Google Scholar
  2. P. J. Garratt, Aromaticity, McGraw-Hill, London, 1971.Google Scholar
  3. J. P. Snyder, Nonbenzenoid Aromatics, Vols. 1 and 2, Academic Press, New York, 1969.Google Scholar
  4. G. A. Olah, Friedel—Crafts Chemistry, Wiley, New York, 1973.Google Scholar
  5. C. K. Ingold, Structure and Mechanism in Organic Chemistry, Cornell University Press, Ithaca, New York, 1969, Chap. VI.Google Scholar
  6. R. O. C. Norman and R. Taylor, Electrophilic Substitution in Benzenoid Compounds, Elsevier, Amsterdam, 1965.Google Scholar
  7. E. Berliner, Prog. Phys. Org. Chem. 2, 253 (1964).CrossRefGoogle Scholar

Chapter 9

  1. 1.
    P. Reeves, T. Devon, and R. Pettit, J. Am. Chem. Soc. 91, 5890 (1969).CrossRefGoogle Scholar
  2. 2a.
    H. L. Ammon and G. L. Wheeler, J. Am. Chem. Soc. 97, 2326 (1975).CrossRefGoogle Scholar
  3. 2b.
    W. v. E. Doering and C. H. DePuy, J. Am. Chem. Soc. 75, 5955 (1953).CrossRefGoogle Scholar
  4. 2c.
    J. H. M. Hill, J. Org. Chem. 32, 3214 (1967).CrossRefGoogle Scholar
  5. 2d.
    D. J. Bertelli, J. Org. Chem. 30, 891 (1965).CrossRefGoogle Scholar
  6. 3a.
    C. K. Ingold and E. H. Ingold, J. Chem. Soc., 2249 (1928).Google Scholar
  7. 3b.
    R. J. Albers and E. C. Kooyman, Rec. Trav. Chim. 83, 930 (1964).CrossRefGoogle Scholar
  8. 3c.
    J. R. Knowles and R. O. C. Norman, J. Chem. Soc., 2938 (1961).Google Scholar
  9. 3d.
    A. Gastaminza, T. A. Modro, J. H. Ridd, and J. H. P. Utley, J. Chem. Soc. B, 534 (1968).Google Scholar
  10. 3e.
    J. R. Knowles, R. O. C. Norman, and G. K. Radda, J. Chem. Soc., 4885 (1960).Google Scholar
  11. 3f.
    F. L. Riley and E. Rothstein, J. Chem. Soc., 3860 (1964).Google Scholar
  12. 4.
    T. C. van Hoek, P. E. Verkade, and B. M. Wepster, Rec. Trav. Chim. 77, 559 (1958);CrossRefGoogle Scholar
  13. 4a.
    A. van Loon, P. E. Verkade, and B. M. Wepster, Rec. Trav. Chim. 79, 977 (1960).CrossRefGoogle Scholar
  14. 5a.
    W. v. E. Doering and F. L. Detert, J. Am. Chem. Soc. 73, 876 (1951).CrossRefGoogle Scholar
  15. 5b.
    E. F. Jenny and J. D. Roberts, J. Am. Chem. Soc. 78, 2005 (1956).CrossRefGoogle Scholar
  16. 6.
    J. E. Dubois, J. J. Aaron, P. Alcais, J. P. Doucet, F. Rothenberg, and R. Uzan, J. Am. Chem. Soc. 94, 6823 (1972).CrossRefGoogle Scholar
  17. 7.
    R. M. Roberts and D. Shiengthong, J. Am. Chem. Soc. 86, 2851 (1964).CrossRefGoogle Scholar
  18. 8.
    G. A. Olah, S. J. Kuhn, S. H. Flood, and J. C. Evans, J. Am. Chem. Soc. 84, 3687 (1962).CrossRefGoogle Scholar
  19. 9.
    R. L. Dannley, J. E. Gagen, and K. Zak, J. Org. Chem. 38, 1 (1973);CrossRefGoogle Scholar
  20. R. L. Dannley and W. R. Knipple, J. Org. Chem. 38, 6 (1973).CrossRefGoogle Scholar
  21. 10.
    B. A. Hess, Jr., and L. J. Schaad, J. Am. Chem. Soc. 93, 305 (1971).CrossRefGoogle Scholar
  22. 11a.
    C. D. Gutsche and K. H. No, J. Org. Chem. 47, 2708 (1982).CrossRefGoogle Scholar
  23. 11b.
    G. D. Figuly and J. C. Martin, J. Org. Chem. 45, 3728 (1980).CrossRefGoogle Scholar
  24. 11c.
    K. Key, C. Eaborn, and D. R. M. Walton, Organomet. Chem. Synthk. 1, 151 (1970–1971).Google Scholar
  25. 11d.
    S. Winstein and R. Baird, J. Am. Chem. Soc. 79, 756 (1957).CrossRefGoogle Scholar
  26. 12.
    R. B. Moodie and K. Schofield, Acc. Chem. Res. 9, 287 (1976).CrossRefGoogle Scholar
  27. 13.
    P. C. Myhre, M. Beug, and L. L. James, J. Am. Chem. Soc. 90, 2105 (1968).CrossRefGoogle Scholar
  28. 14.
    P. Rys, P. Skrabal, and H. Zollinger, Angew. Chem. Int. Ed. Engl. 11, 874 (1972).CrossRefGoogle Scholar
  29. 15.
    D. Bostwick, H. F. Henneike, and H. P. Hopkins, Jr., J. Am. Chem. Soc. 97, 1505 (1975).CrossRefGoogle Scholar
  30. 16.
    C. K. Ingold, Structure and Mechanism in Organic Chemistry, Second Edition, Cornell University Press, Ithaca, New York 1969, pp. 340–344;Google Scholar
  31. 16a.
    C. G. Swain and D. R. Crist, J. Am. Chem. Soc. 94, 3195 (1972).CrossRefGoogle Scholar
  32. 17.
    M. L. Bird and C. K. Ingold, J. Chem. Soc., 918 (1938);Google Scholar
  33. 17a.
    J. D. Roberts, J. K. Sanford, F. L. J. Sixma, H. Cerfontain, and R. Zagt, J. Am. Chem. Soc. 76, 4525 (1954).CrossRefGoogle Scholar
  34. 18.
    E. Baciocchi, F. Cacace, G. Ciranni, and G. Illuminati, J. Am. Chem. Soc. 94, 7030 (1972).CrossRefGoogle Scholar
  35. 19.
    D. S. Noyce, P. A. Kittle, and E. H. Banitt, J. Org. Chem. 33, 1500 (1968).CrossRefGoogle Scholar
  36. 20.
    T. Otsubo, R. Gray, and V. Boekelheide, J. Am. Chem. Soc. 100, 2449 (1978).CrossRefGoogle Scholar
  37. 21.
    L. M. Jackman and V. R. Haddon, J. Am. Chem. Soc. 96, 5130 (1974);CrossRefGoogle Scholar
  38. 21a.
    M. Gates, D. L. Frank, and W. C. von Felten, J. Am. Chem. Soc. 96, 5138 (1974).CrossRefGoogle Scholar
  39. 22.
    T. A. Modro and K. Yates, J. Am. Chem. Soc. 98, 4247 (1976).CrossRefGoogle Scholar
  40. 23.
    A. V. R. Rao, V. H. Deshpande, and N. L. Reddy, Tetrahedron Lett., 4373 (1982).Google Scholar
  41. 24.
    E. Vogel, H. Königshofen, J. Wassen, K. Müllen, and J. F. M. Oth, Angew. Chem. Int. Ed. Engl. 13, 732 (1974);CrossRefGoogle Scholar
  42. 24a.
    J. F. M. Oth, K. Müllen, H.-V. Runzheimer, P. Mues, and E. Vogel, Angew. Chem. Int. Ed. Engl. 16, 872 (1977).CrossRefGoogle Scholar
  43. 25.
    G. R. Stevenson and B. E. Forch, J. Am. Chem. Soc. 102, 5985 (1980).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations