Conformational, Steric, and Stereoelectronic Effects

  • Francis A. Carey
  • Richard J. Sundberg


The total energy of a molecule is directly related to its geometry. Several aspects of molecular geometry can be recognized, and, to some extent, the energetic consequences can be dissected and attributed to specific structural features. Among the factors which contribute to total energy and have a recognizable connection with molecular geometry are nonbonded repulsions, ring strain in cyclic systems, and destabilization resulting from distortion of bond lengths or bond angles from optimal values. Conversely, there are stabilizing interactions which have geometric constraints. Most of these can be classed as stereoelectronic effects; that is, a particular geometric relationship is required to maximize the stabilizing interaction. In addition there are other molecular interactions, such as hydrogen bonds and dipole—dipole interactions, where the strength of the interaction will be strongly dependent on geometric factors. A molecule will adopt the minimum energy geometry that is available by rotations about single bonds. The various shapes that a given molecule can attain by these rotations are called conformations. The principles on which analysis of conformational equilibria and rotational processes are based have been developed using a classical mechanical framework, for the most part. More recently, the problem of detailed interpretation of molecular geometry has also been attacked from the molecular orbital viewpoint.


Anomeric Effect Rotational Barrier Equatorial Orientation Gauche Conformation Torsional Strain 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. J. Dale, Stereochemistry and Conformational Analysis, Verlag Chemie, New York, 1978Google Scholar
  2. E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, Conformational Analysis, Interscience, New York, 1965.Google Scholar
  3. E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill. New York , 1962Google Scholar
  4. M. Hanack, Conformation Theory, Academic Press, New York, 1965.Google Scholar
  5. L. M. Jackman and F. A. Cotton (eds.), Dynamic Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York, 1975, Chaps. 3, 6, 7, and 14.Google Scholar
  6. G. Chiurdoglu (ed.), Conformational Analysis, Scope and Present Limitations, Academic Press, New York, 1971.Google Scholar
  7. M. S. Newman (ed.), Steric Effects in Organic Chemistry, John Wiley and Sons, New York. 1956.Google Scholar
  8. B. Testa, Principles of Organic Stereochemistry, Marcel Dekker, New York, 1979.Google Scholar
  9. A. Greenberg and J. F. Liebman, Strained Organic Molecules, Academic Press, New York, 1978.Google Scholar

Chapter 3

  1. 1a.
    R. L. Lipnick and E. W. Garbisch, Jr., J. Am. Chem. Soc. 95, 6375 (1973).CrossRefGoogle Scholar
  2. 1b.
    B. Rickborn and M. T. Wuesthoff, J. Am. Chem. Soc. 92, 6894 (1970).CrossRefGoogle Scholar
  3. 2.
    H. C. Brown and W. C. Dickason, J. Am. Chem. Soc. 91, 1226 (1969).CrossRefGoogle Scholar
  4. 3.
    E. L. Eliel and S. H. Schroeter, J. Am. Chem. Soc. 87, 5031 (1965).CrossRefGoogle Scholar
  5. 4a.
    C. L. Stevens, J. B. Filippi, and K. G. Taylor, J. Org. Chem. 31, 1292 (1966).CrossRefGoogle Scholar
  6. 4b.
    M. Miyamoto, Y. Kawamatsu, M. Shinohara, Y. Nakadaira, and K. Nakanishi, Tetrahedron 22, 2785 (1966).CrossRefGoogle Scholar
  7. 4c.
    D. H. Williams and J. R. Kalman, J. Am. Chem. Soc. 99, 2768 (1977).CrossRefGoogle Scholar
  8. 5a.
    J. E. Baldwin and J. A. Reiss, J. Chem. Soc. Chem. Commun., 77 (1977).Google Scholar
  9. 5b.
    H. C. Brown, J. H. Kawakami, and S. Ikegami, J. Am. Chem. Soc. 92, 6914 (1970).CrossRefGoogle Scholar
  10. 5c.
    R. E. Lyle, E. W. Southwick, and J. J. Kaminski, J. Am. Chem. Soc. 94, 1413 (1972).CrossRefGoogle Scholar
  11. 5d.
    E. C. Ashby and S. A. Noding, J. Am. Chem. Soc. 98, 2010 (1976).CrossRefGoogle Scholar
  12. 5e.
    R. D. G. Cooper, P. V. DeMarco, and D. O. Spry, J. Am. Chem. Soc. 91, 1528 (1969).CrossRefGoogle Scholar
  13. 6.
    W. C. Neikam and B. P. Dailey, J. Chem. Phys. 38, 445 (1963).CrossRefGoogle Scholar
  14. 7a.
    H. Tanida, S. Yamamoto, and K. Takeda, J. Org. Chem. 38, 2792 (1973).CrossRefGoogle Scholar
  15. 7b.
    J. E. Baldwin and L. I. Kruse, J. Chem. Soc. Chem. Commun., 233 (1977).Google Scholar
  16. 7c.
    N. L. Allinger and J. C. Graham., J. Org. Chem. 36, 1688 (1971).CrossRefGoogle Scholar
  17. 7d.
    C. Galli, G. Illuminati, L. Mandolini, and P. Tamborra, J. Am. Chem. Soc. 99, 2591 (1977).CrossRefGoogle Scholar
  18. 7e.
    C. M. Evans, R. Glenn, and A. J. Kirby, J. Am. Chem. Soc. 104, 4706 (1982).CrossRefGoogle Scholar
  19. 7f.
    J. F. Bunnett, S. Sekiguchi, and L. A. Smith, J. Am. Chem. Soc. 103, 4865 (1981).CrossRefGoogle Scholar
  20. 7g.
    P. Müller and J.-C. Perlberger, J. Am. Chem. Soc. 98, 8407 (1976).CrossRefGoogle Scholar
  21. 8a.
    J. C. Little, Y-L. C. Tong, and J. P. Heeschen, J. Am. Chem. Soc. 91, 7090 (1969).CrossRefGoogle Scholar
  22. 8b.
    D. J. Pasto and D. R. Rao, J. Am. Chem. Soc. 92, 5151 (1970).CrossRefGoogle Scholar
  23. 8c.
    P. E. Pfeffer and S. F. Osman, J. Org. Chem. 37, 2425 (1972).CrossRefGoogle Scholar
  24. 8d.
    P. L. Durrette and D. Horton, Carbohyd. Res. 18, 57 (1971).CrossRefGoogle Scholar
  25. 8e.
    B. Fuchs and A. Ellencweig, J. Org. Chem. 44, 2274 (1979).CrossRefGoogle Scholar
  26. 8f.
    M. J. Anteunis, D. Tavernier, and F. Borremans, Heterocycles 4, 293 (1976).CrossRefGoogle Scholar
  27. 9.
    N. L. Allinger and M. Tz. Tribble, Tetrahedron Lett., 3259 (1971).Google Scholar
  28. 10.
    L. Lunazzi, D. Macciantelli, F. Bernardi, and K. U. Ingold, J. Am. Chem. Soc. 99, 4573 (1977).CrossRefGoogle Scholar
  29. 11a.
    E. N. Marvell and R. S. Knutson, J. Org. Chem. 35, 388 (1970).CrossRefGoogle Scholar
  30. 11b.
    R. J. Ouellette, J. D. Rawn, and S. N. Jreissaty, J. Am. Chem. Soc. 93, 7117 (1971).CrossRefGoogle Scholar
  31. 11c.
    V. S. Mastryukov, E. L. Olsina, L. V. Vilkov, and R. L. Hilderbrandt, J. Am. Chem. Soc. 99, 6855 (1977).CrossRefGoogle Scholar
  32. 11d.
    D. D. Danielson and K. Hedberg, J. Am. Chem. Soc. 101, 3730 (1979).CrossRefGoogle Scholar
  33. 12.
    J. B. Lambert, R. R. Clikeman, and E. S. Magyar, J. Am. Chem. Soc. 96, 2265 (1974).CrossRefGoogle Scholar
  34. 13.
    J. G. Vintner and H. M. R. Hoffmann, J. Am. Chem. Soc. 96, 5466 (1974).CrossRefGoogle Scholar
  35. 14.
    A. Bienvenue, J. Am. Chem. Soc. 95, 7345 (1973).CrossRefGoogle Scholar
  36. 15.
    E. Ghera, Y. Gaoni, and S. Shoua, J. Am. Chem. Soc. 98, 3627 (1976).CrossRefGoogle Scholar
  37. 16.
    D. K. Dalling and D. M. Grant, J. Am. Chem. Soc. 94, 5318 (1972).CrossRefGoogle Scholar
  38. 17a.
    H. C. Brown, J. H. Kawakami, and S. Ikegami, J. Am. Chem. Soc. 92, 6914 (1970).CrossRefGoogle Scholar
  39. 17b.
    B. Waegell and C. W. Jefford, Bull. Soc. Chim. Fr., 844 (1964).Google Scholar
  40. 17c.
    H. C. Brown and J. H. Kawakami, J. Am. Chem. Soc. 92, 1990 (1970).CrossRefGoogle Scholar
  41. 17d.
    L. A. Spurlock and K. P. Clark, J. Am. Chem. Soc. 94, 5349 (1972).CrossRefGoogle Scholar
  42. 17e.
    K. B. Wiberg and K. A. Saegebarth, J. Am. Chem. Soc. 79, 2822 (1957).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations