Skip to main content

Conformational, Steric, and Stereoelectronic Effects

  • Chapter
Advanced Organic Chemistry

Abstract

The total energy of a molecule is directly related to its geometry. Several aspects of molecular geometry can be recognized, and, to some extent, the energetic consequences can be dissected and attributed to specific structural features. Among the factors which contribute to total energy and have a recognizable connection with molecular geometry are nonbonded repulsions, ring strain in cyclic systems, and destabilization resulting from distortion of bond lengths or bond angles from optimal values. Conversely, there are stabilizing interactions which have geometric constraints. Most of these can be classed as stereoelectronic effects; that is, a particular geometric relationship is required to maximize the stabilizing interaction. In addition there are other molecular interactions, such as hydrogen bonds and dipole—dipole interactions, where the strength of the interaction will be strongly dependent on geometric factors. A molecule will adopt the minimum energy geometry that is available by rotations about single bonds. The various shapes that a given molecule can attain by these rotations are called conformations. The principles on which analysis of conformational equilibria and rotational processes are based have been developed using a classical mechanical framework, for the most part. More recently, the problem of detailed interpretation of molecular geometry has also been attacked from the molecular orbital viewpoint.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  • J. Dale, Stereochemistry and Conformational Analysis, Verlag Chemie, New York, 1978

    Google Scholar 

  • E. L. Eliel, N. L. Allinger, S. J. Angyal, and G. A. Morrison, Conformational Analysis, Interscience, New York, 1965.

    Google Scholar 

  • E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw-Hill. New York , 1962

    Google Scholar 

  • M. Hanack, Conformation Theory, Academic Press, New York, 1965.

    Google Scholar 

  • L. M. Jackman and F. A. Cotton (eds.), Dynamic Nuclear Magnetic Resonance Spectroscopy, Academic Press, New York, 1975, Chaps. 3, 6, 7, and 14.

    Google Scholar 

  • G. Chiurdoglu (ed.), Conformational Analysis, Scope and Present Limitations, Academic Press, New York, 1971.

    Google Scholar 

  • M. S. Newman (ed.), Steric Effects in Organic Chemistry, John Wiley and Sons, New York. 1956.

    Google Scholar 

  • B. Testa, Principles of Organic Stereochemistry, Marcel Dekker, New York, 1979.

    Google Scholar 

  • A. Greenberg and J. F. Liebman, Strained Organic Molecules, Academic Press, New York, 1978.

    Google Scholar 

Chapter 3

  1. R. L. Lipnick and E. W. Garbisch, Jr., J. Am. Chem. Soc. 95, 6375 (1973).

    Article  CAS  Google Scholar 

  2. B. Rickborn and M. T. Wuesthoff, J. Am. Chem. Soc. 92, 6894 (1970).

    Article  CAS  Google Scholar 

  3. H. C. Brown and W. C. Dickason, J. Am. Chem. Soc. 91, 1226 (1969).

    Article  CAS  Google Scholar 

  4. E. L. Eliel and S. H. Schroeter, J. Am. Chem. Soc. 87, 5031 (1965).

    Article  CAS  Google Scholar 

  5. C. L. Stevens, J. B. Filippi, and K. G. Taylor, J. Org. Chem. 31, 1292 (1966).

    Article  CAS  Google Scholar 

  6. M. Miyamoto, Y. Kawamatsu, M. Shinohara, Y. Nakadaira, and K. Nakanishi, Tetrahedron 22, 2785 (1966).

    Article  CAS  Google Scholar 

  7. D. H. Williams and J. R. Kalman, J. Am. Chem. Soc. 99, 2768 (1977).

    Article  CAS  Google Scholar 

  8. J. E. Baldwin and J. A. Reiss, J. Chem. Soc. Chem. Commun., 77 (1977).

    Google Scholar 

  9. H. C. Brown, J. H. Kawakami, and S. Ikegami, J. Am. Chem. Soc. 92, 6914 (1970).

    Article  CAS  Google Scholar 

  10. R. E. Lyle, E. W. Southwick, and J. J. Kaminski, J. Am. Chem. Soc. 94, 1413 (1972).

    Article  CAS  Google Scholar 

  11. E. C. Ashby and S. A. Noding, J. Am. Chem. Soc. 98, 2010 (1976).

    Article  CAS  Google Scholar 

  12. R. D. G. Cooper, P. V. DeMarco, and D. O. Spry, J. Am. Chem. Soc. 91, 1528 (1969).

    Article  CAS  Google Scholar 

  13. W. C. Neikam and B. P. Dailey, J. Chem. Phys. 38, 445 (1963).

    Article  CAS  Google Scholar 

  14. H. Tanida, S. Yamamoto, and K. Takeda, J. Org. Chem. 38, 2792 (1973).

    Article  CAS  Google Scholar 

  15. J. E. Baldwin and L. I. Kruse, J. Chem. Soc. Chem. Commun., 233 (1977).

    Google Scholar 

  16. N. L. Allinger and J. C. Graham., J. Org. Chem. 36, 1688 (1971).

    Article  CAS  Google Scholar 

  17. C. Galli, G. Illuminati, L. Mandolini, and P. Tamborra, J. Am. Chem. Soc. 99, 2591 (1977).

    Article  CAS  Google Scholar 

  18. C. M. Evans, R. Glenn, and A. J. Kirby, J. Am. Chem. Soc. 104, 4706 (1982).

    Article  CAS  Google Scholar 

  19. J. F. Bunnett, S. Sekiguchi, and L. A. Smith, J. Am. Chem. Soc. 103, 4865 (1981).

    Article  CAS  Google Scholar 

  20. P. MĂĽller and J.-C. Perlberger, J. Am. Chem. Soc. 98, 8407 (1976).

    Article  Google Scholar 

  21. J. C. Little, Y-L. C. Tong, and J. P. Heeschen, J. Am. Chem. Soc. 91, 7090 (1969).

    Article  CAS  Google Scholar 

  22. D. J. Pasto and D. R. Rao, J. Am. Chem. Soc. 92, 5151 (1970).

    Article  CAS  Google Scholar 

  23. P. E. Pfeffer and S. F. Osman, J. Org. Chem. 37, 2425 (1972).

    Article  CAS  Google Scholar 

  24. P. L. Durrette and D. Horton, Carbohyd. Res. 18, 57 (1971).

    Article  Google Scholar 

  25. B. Fuchs and A. Ellencweig, J. Org. Chem. 44, 2274 (1979).

    Article  CAS  Google Scholar 

  26. M. J. Anteunis, D. Tavernier, and F. Borremans, Heterocycles 4, 293 (1976).

    Article  CAS  Google Scholar 

  27. N. L. Allinger and M. Tz. Tribble, Tetrahedron Lett., 3259 (1971).

    Google Scholar 

  28. L. Lunazzi, D. Macciantelli, F. Bernardi, and K. U. Ingold, J. Am. Chem. Soc. 99, 4573 (1977).

    Article  CAS  Google Scholar 

  29. E. N. Marvell and R. S. Knutson, J. Org. Chem. 35, 388 (1970).

    Article  CAS  Google Scholar 

  30. R. J. Ouellette, J. D. Rawn, and S. N. Jreissaty, J. Am. Chem. Soc. 93, 7117 (1971).

    Article  CAS  Google Scholar 

  31. V. S. Mastryukov, E. L. Olsina, L. V. Vilkov, and R. L. Hilderbrandt, J. Am. Chem. Soc. 99, 6855 (1977).

    Article  CAS  Google Scholar 

  32. D. D. Danielson and K. Hedberg, J. Am. Chem. Soc. 101, 3730 (1979).

    Article  CAS  Google Scholar 

  33. J. B. Lambert, R. R. Clikeman, and E. S. Magyar, J. Am. Chem. Soc. 96, 2265 (1974).

    Article  CAS  Google Scholar 

  34. J. G. Vintner and H. M. R. Hoffmann, J. Am. Chem. Soc. 96, 5466 (1974).

    Article  Google Scholar 

  35. A. Bienvenue, J. Am. Chem. Soc. 95, 7345 (1973).

    Article  CAS  Google Scholar 

  36. E. Ghera, Y. Gaoni, and S. Shoua, J. Am. Chem. Soc. 98, 3627 (1976).

    Article  CAS  Google Scholar 

  37. D. K. Dalling and D. M. Grant, J. Am. Chem. Soc. 94, 5318 (1972).

    Article  CAS  Google Scholar 

  38. H. C. Brown, J. H. Kawakami, and S. Ikegami, J. Am. Chem. Soc. 92, 6914 (1970).

    Article  CAS  Google Scholar 

  39. B. Waegell and C. W. Jefford, Bull. Soc. Chim. Fr., 844 (1964).

    Google Scholar 

  40. H. C. Brown and J. H. Kawakami, J. Am. Chem. Soc. 92, 1990 (1970).

    Article  CAS  Google Scholar 

  41. L. A. Spurlock and K. P. Clark, J. Am. Chem. Soc. 94, 5349 (1972).

    Article  CAS  Google Scholar 

  42. K. B. Wiberg and K. A. Saegebarth, J. Am. Chem. Soc. 79, 2822 (1957).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Springer Science+Business Media New York

About this chapter

Cite this chapter

Carey, F.A., Sundberg, R.J. (1984). Conformational, Steric, and Stereoelectronic Effects. In: Advanced Organic Chemistry. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1143-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1143-1_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1145-5

  • Online ISBN: 978-1-4757-1143-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics