Concerted Reactions

  • Francis A. Carey
  • Richard J. Sundberg


There are many reactions in organic chemistry that give no evidence of involving intermediates when they are subjected to the usual probes employed for studying reaction mechanisms. Highly polar transition states do not seem to be involved either, since the rates of such reactions are insensitive to solvent polarity. Efforts to detect free-radical intermediates by physical or chemical means have not been successful, and the reaction rates are neither increased by initiators nor decreased by free-radical inhibitors. This lack of evidence of intermediates leads to the conclusion that the reactions are concerted processes in which bond making and bond breaking both contribute to the structure at the transition state, although not necessarily to the same degree. There are numerous examples of both unimolecular and bimolecular concerted processes.


High Occupied Molecular Orbital Lower Unoccupied Molecular Orbital Cycloaddition Reaction Orbital Symmetry Claisen Rearrangement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

General References

  1. R. B. Woodward and R. Hoffmann, The Conservation of Orbital Symmetry, Academic Press, New York, 1970.Google Scholar
  2. H. E. Zimmerman, Acc. Chem. Res. 4, 272 (1971).CrossRefGoogle Scholar
  3. W. C. Herndon, Chem. Rev. 72, 157 (1972).CrossRefGoogle Scholar
  4. K. N. Houk, Acc. Chem. Res. 11, 361 (1975).CrossRefGoogle Scholar
  5. S. J. Rhoads and N. R. Raulins, Org. React. 22, 1 (1974).Google Scholar
  6. M. J. S. Dewar, The Molecular Orbital Theory of Organic Chemistry, McGraw-Hill, New York, 1969.Google Scholar
  7. M. J. S. Dewar and R. C. Dougherty, The PMO Theory of Organic Chemistry, Plenum Press, New York, 1975.CrossRefGoogle Scholar
  8. J. B. Hendrickson, Angew. Chem. Int. Ed. Engl. 13, 47 (1974).CrossRefGoogle Scholar
  9. I. Fleming, Frontier Orbitals and Organic Chemical Reactions, Wiley—Interscience, New York, 1976.Google Scholar
  10. T. L. Gilchrist and R. C. Storr, Organic Reactions and Orbital Symmetry, Second Edition, Cambridge University Press, Cambridge, 1979.Google Scholar
  11. R. E. Lehr and A. P. Marchand, Orbital Symmetry, A Problem-Solving Approach, Academic Press, New York, 1972.Google Scholar
  12. A. P. Marchand and R. E. Lehr, Pericyclic Reactions, Vols. I and II, Academic Press, New York, 1977.Google Scholar
  13. E. N. Marvell, Thermal Electrocyclic Reactions, Academic Press, New York, 1980.Google Scholar
  14. L. Salem, Electrons in Chemical Reactions, Wiley, New York, 1982.Google Scholar

Chapter 10

  1. 2a.
    E. Vogel, Justus Liebigs Ann. Chem. 615, 14 (1958).CrossRefGoogle Scholar
  2. 2b.
    A. C. Cope, A. C. Haven Jr., F. L. Ramp, and E. R. Trumbull, J. Am. Chem. Soc. 74, 4867 (1952).CrossRefGoogle Scholar
  3. 2c.
    R. Pettit, J. Am. Chem. Soc. 82, 1972 (1960).CrossRefGoogle Scholar
  4. 2d.
    M. Oda, M. Oda, and Y. Kitahara, Tetrahedron Lett., 839 (1976).Google Scholar
  5. 2e.
    K. M. Rapp and J. Daub, Tetrahedron Lett., 2011 (1976).Google Scholar
  6. 2f.
    E. J. Corey and D. K. Herron, Tetrahedron Lett., 1641 (1971).Google Scholar
  7. 3.
    A. G. Anastassiou, V. Orfanos, and J. H. Gebrian, Tetrahedron Lett., 4491 (1969);Google Scholar
  8. 3a.
    P. Radlick and G. Alford, J. Am. Chem. Soc. 91, 6529 (1969).CrossRefGoogle Scholar
  9. 4a.
    K. B. Wiberg, V. Z. Williams Jr., and L. E. Friedrich, J. Am. Chem. Soc. 90, 5338 (1968).CrossRefGoogle Scholar
  10. 4b.
    P. S. Wharton and R. A. Kretchmer, J. Org. Chem. 33, 4258 (1968).CrossRefGoogle Scholar
  11. 4c.
    R. L. Danheiser, C. Martinez-Davila, and J. M. Morin Jr., J. Org. Chem. 45, 1340 (1980);CrossRefGoogle Scholar
  12. 4ca.
    4ca. R. L. Danheiser, C. Martinez-Davila, R. J. Auchus, and J. T. Kadonaga, J. Am. Chem. Soc. 103, 2443 (1981).CrossRefGoogle Scholar
  13. 4d.
    R. K. Hill and M. G. Bock, J. Am. Chem. Soc. 100, 637 (1978).CrossRefGoogle Scholar
  14. 4e.
    M. Newcomb and W. T. Ford, J. Am. Chem. Soc. 95, 7186 (1973).CrossRefGoogle Scholar
  15. 5a.
    L. A. Paquette and M. Oku, J. Am. Chem. Soc. 96, 1219 (1974).CrossRefGoogle Scholar
  16. 5b.
    A. E. Hill, G. Greenwood, and H. M. R. Hoffmann, J. Am. Chem. Soc. 95, 1338 (1973).CrossRefGoogle Scholar
  17. 5c.
    S. W. Staley and T. J. Henry, J. Am. Chem. Soc. 93, 1292 (1971).CrossRefGoogle Scholar
  18. 5d.
    T. Kauffmann and E. Köppelmann, Angew. Chem. Int. Ed. Engl. 11, 290 (1972).CrossRefGoogle Scholar
  19. 5e.
    C. W. Jefford, A. F. Boschung, and C. G. Rimbault, Tetrahedron Lett., 3387 (1974).Google Scholar
  20. 5f.
    M. F. Semmelhack, H. N. Weller, and J. S. Foos, J. Am. Chem. Soc. 99, 292 (1977).CrossRefGoogle Scholar
  21. 5g.
    R. K. Boeckman Jr., M. H. Delton, T. Nagasaka, and T. Watanabe, J. Org. Chem. 42, 2946 (1977).CrossRefGoogle Scholar
  22. 5h.
    I. Hasan and F. W. Fowler, J. Am. Chem. Soc. 100, 6696 (1978).CrossRefGoogle Scholar
  23. 5i.
    R. Subramanyan, P. D. Bartlett, G. Y. M. Iglesias, W. H. Watson, and J. Galloy, J. Org. Chem. 47, 4491 (1982).CrossRefGoogle Scholar
  24. 6.
    A. Anastassiou and . P. Cellura, Chem. Commun., 1521 (1969).Google Scholar
  25. 7a.
    L. A. Feiler, R. Huisgen, and P. Koppitz, J. Am. Chem. Soc. 96, 2270 (1974).CrossRefGoogle Scholar
  26. 7b.
    H. H. Wasserman, J. U. Piper, and E. V. Dehmlow, J. Org. Chem. 38, 1451 (1973).CrossRefGoogle Scholar
  27. 7c.
    D. A. Evans and A. M. Golob, J. Am. Chem. Soc. 97, 4765 (1975).CrossRefGoogle Scholar
  28. 7d.
    K. Oshima, H. Takahashi, H. Yamamoto, and H. Nozaki, J. Am. Chem. Soc. 95, 2693 (1973).CrossRefGoogle Scholar
  29. 7e.
    N. Shimizu, M. Tanaka, and Y. Tsuno, J. Am. Chem. Soc. 104, 1330 (1982).CrossRefGoogle Scholar
  30. 7f.
    V. Cere, E. Dalcanale, C. Paolucci, S. Pollicino, E. Sandri, L. Lunazzi, and A. Fava, J. Org. Chem. 47, 3540 (1982).CrossRefGoogle Scholar
  31. 7g.
    L. A. Paquette, and M. J. Wyvratt, J. Am. Chem. Soc. 96, 4671 (1974);CrossRefGoogle Scholar
  32. 7ga.
    7ga. D. McNeil, B. R. Vogt, J. J. Sudol, S. Theodoropulos, and E. Hedaya, J. Am. Chem. Soc. 96, 4673 (1974).CrossRefGoogle Scholar
  33. 7h.
    D. Bellus, H.-C. Mez, G. Rihs, and H. Sauter, J. Am. Chem. Soc. 96, 5007 (1974).CrossRefGoogle Scholar
  34. 7i.
    W. Grimme, J. Am. Chem. Soc. 95, 2381 (1973).CrossRefGoogle Scholar
  35. 7j.
    W. Weyler, Jr., L. R. Byrd, M. C. Caserio, and H. W. Moore, J. Am. Chem. Soc. 94, 1027 (1972).CrossRefGoogle Scholar
  36. 7k.
    M. Nakazaki, K. Naemura, H. Harada, and H. Narutaki, J. Org. Chem. 47, 3470 (1982).CrossRefGoogle Scholar
  37. 8.
    W. H. Rastetter and T. J. Richard, J. Am. Chem. Soc. 101, 3893 (1979).CrossRefGoogle Scholar
  38. 9.
    R. Huisgen and W. E. Konz, J. Am. Chem. Soc. 92, 4102 (1970).CrossRefGoogle Scholar
  39. 10a.
    L. A. Paquette and R. S. Beckley, J. Am. Chem. Soc. 97, 1084 (1975).CrossRefGoogle Scholar
  40. 10b.
    K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, and J. Uenishi, J. Am. Chem. Soc. 104, 5555 (1982).CrossRefGoogle Scholar
  41. 10c.
    B. M. Trost and A. J. Bridges, J. Am. Chem. Soc. 98, 5017 (1976).CrossRefGoogle Scholar
  42. 10d.
    K. C. Nicolaou, N. A. Petasis, R. E. Zipkin, and J. Uenishi, J. Am. Chem. Soc. 104, 5555 (1982).CrossRefGoogle Scholar
  43. 10e.
    K. J. Shea and R. B. Phillips, J. Am. Chem. Soc. 100, 654 (1978).CrossRefGoogle Scholar
  44. 11.
    R. K. Hill, J. W. Morgan, R. V. Shetty, and M. E. Synerholm, J. Am. Chem. Soc. 96, 4201 (1974);CrossRefGoogle Scholar
  45. 11a.
    H. M. R. Hoffmann, Angew. Chem. Int. Ed. Engl. 8, 556 (1969).CrossRefGoogle Scholar
  46. 12a.
    T. J. Brocksom and M. G. Constantino, J. Org. Chem. 47, 3450 (1982).CrossRefGoogle Scholar
  47. 12b.
    L. E. Overman, G. F. Taylor, K. N. Houk, and L. N. Domelsmith, J. Am. Chem. Soc. 100, 3182 (1978).CrossRefGoogle Scholar
  48. 12c.
    P. W. Tang and C. A. Maggiulli, J. Org. Chem. 46, 3429 (1981).CrossRefGoogle Scholar
  49. 12d.
    R. B. Woodward, F. Sondheimer, D. Taub, K. Heusler, and W. M. McLamore, J. Am. Chem. Soc. 74, 4223 (1952).CrossRefGoogle Scholar
  50. 12e.
    T. Cohen and Z. Kosarych, J. Org. Chem. 47, 4005 (1982).CrossRefGoogle Scholar
  51. 13.
    S. V. Ley and L. A. Paquette, J. Am. Chem. Soc. 96, 6670 (1974).CrossRefGoogle Scholar
  52. 14a.
    A. K. Cheng, F. A. L. Anet, J. Mioduski, and J. Meinwald, J. Am. Chem. Soc. 96, 2887 (1974).CrossRefGoogle Scholar
  53. 14b.
    J. S. McKennis, L. Brener, J. S. Ward, and R. Pettit, J. Am. Chem. Soc. 93, 4957 (1971).CrossRefGoogle Scholar
  54. 14c.
    W. Grimme, H. J. Riebel, and E. Vogel, Angew. Chem. Int. Ed. Engl. 7, 823 (1968).CrossRefGoogle Scholar
  55. 14d.
    W. Grimme, J. Am. Chem. Soc. 94, 2525 (1972).CrossRefGoogle Scholar
  56. 14e.
    J. J. Gajewski, L. K. Hoffman, and C. N. Shih, J. Am. Chem. Soc. 96, 3705 (1974).CrossRefGoogle Scholar
  57. 14f.
    R. P. Lutz and J. D. Roberts, J. Am. Chem. Soc. 83, 2198 (1961).CrossRefGoogle Scholar
  58. 15.
    A. Krantz, J. Am. Chem. Soc. 94, 4020 (1972).CrossRefGoogle Scholar
  59. 16.
    H.-D. Martin and E. Eisenmann, Tetrahedron Lett., 661 (1975).Google Scholar
  60. 17a.
    A. Viola and L. Levasseur, J. Am. Chem. Soc. 87, 1150 (1965).CrossRefGoogle Scholar
  61. 17b.
    S. F. Reed, Jr., J. Org. Chem. 30, 1663 (1965).CrossRefGoogle Scholar
  62. 17c.
    T. S. Cantrell and H. Shechter, J. Am. Chem. Soc. 89, 5868 (1967).CrossRefGoogle Scholar
  63. 17d.
    R. B. Woodward, R. E. Lehr, and H. H. Inhoffen, Justus Liebigs Ann. Chem. 714, 57 (1968).CrossRefGoogle Scholar
  64. 17e.
    R. B. Woodward and T. J. Katz, Tetrahedron 5, 70 (1959).CrossRefGoogle Scholar
  65. 17f.
    N. J. Turro and W. B. Hammond, Tetrahedron 24, 6029 (1968).CrossRefGoogle Scholar
  66. 17g.
    J. S. McConaghy, Jr., and J. J. Bloomfield, Tetrahedron Lett., 3719 (1969).Google Scholar
  67. 17h.
    W. J. Linn and R. E. Benson, J. Am. Chem. Soc. 87, 3657 (1965).CrossRefGoogle Scholar
  68. 17i.
    J. K. Crandall and W. H. Machleder, J. Am. Chem. Soc. 90, 7292 (1968).CrossRefGoogle Scholar
  69. 17j.
    M. Jones, Jr., S. D. Reich, and L. T. Scott, J. Am. Chem. Soc. 92, 3118 (1970).CrossRefGoogle Scholar
  70. 17k.
    M. Jones, Jr., and B. Fairless, Tetrahedron Lett., 4881 (1968);Google Scholar
  71. 17ka.
    R. T. Seidner, N. Nakatsuka, and S. Masamune, Can. J. Chem. 48, 187 (1970).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Francis A. Carey
    • 1
  • Richard J. Sundberg
    • 1
  1. 1.University of VirginiaCharlottesvilleUSA

Personalised recommendations