Environmental Stages and Dynamic Experiments

  • B. K. Tanner
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 63)

Abstract

In studies involving X-ray topography there is, as with all research, a subtle temptation to allow the study of the technique to obliterate the original scientific problem. There is, of course, a very proper place for carefully conceived model experiments to test theoretical predictions of defect contrast and one must not under-emphasize the importance of detailed examination of image contrast in reaching conclusions about the origin and significance of crystal defects. However, X-ray topography is only an analytic tool, akin to electron and optical microscopy, to be used in conjunction with other measurements. In Lang’s studies of diamond [1,2] for example the crystals were examined by X-ray topography, visible light and ultra-violet microscopy, cathodoluminescence topography and ultra-microscopy. It is when X-ray topographic results, which provide data on lattice distortions, are combined with measurements of totally different parameters that some of the most valuable insights are obtained.

Keywords

Dynamic Experiment Photographic Plate Synchrotron Radiation Source Beryllium Window Topography Study 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.R. Lang (1974) Proc. Roy. Soc. Lond A 340 233ADSCrossRefGoogle Scholar
  2. 2.
    A.R. Lang (1977) J. Crystal Growth 42 625ADSCrossRefGoogle Scholar
  3. 3.
    A.R. Lang (1970) in Modern Diffraction and Imaging Techniques in Material Science (ed. S. Amelinckx, R. Gevers, G. Remaut and J. Van Landuyt) N. Holland p. 407Google Scholar
  4. 4.
    B.K. Tanner (1976) X-ray Diffraction Topography, Pergamon PressGoogle Scholar
  5. 5.
    R. Argemi, C. G’Sell and B. Baudelet (1971) Rev. Sci. Inst. 42 1711ADSCrossRefGoogle Scholar
  6. 6.
    A.C. Greenham, B.J. Isherwood and C.A. Wallace (1965) Brit:. J. Appl. Phys 16, 1759ADSCrossRefGoogle Scholar
  7. 7.
    B.J. Isherwood and C.A. Wallace (1975) J. Phys. D. 8, 1827ADSCrossRefGoogle Scholar
  8. 8.
    S. Yamashita and N. Kato (1975) J. Appl. Cryst. 8, 623CrossRefGoogle Scholar
  9. 9.
    K. Yasuda and N. Kato (1978) J. Appl. Cryst. 11,-705Google Scholar
  10. 10.
    N. Niizeki and M. Hasegawa (1964) J. Phys. Soc. Japan 19 5.50Google Scholar
  11. 11.
    K. Itagaki (1970) Adv. X-ray Analysis 13, 526CrossRefGoogle Scholar
  12. 12.
    S. Nagakura and Y. Chikaura (1971) J. Phys. Soc. Japan 30, 495ADSCrossRefGoogle Scholar
  13. 13.
    T. Yamada, S. Saito and Y. Shimomura (1966) J. Phys. Soc. Japan 21, 672ADSCrossRefGoogle Scholar
  14. 14.
    K. Nakahigashi, N. Fukuoka and Y. Shimomura (1975) J. Phys. Soc. Japan 38, 1634ADSCrossRefGoogle Scholar
  15. 15.
    M. Safa, D. Midgley and B.K. Tanner (1975) Phys. Stat. Sol. (a) 28, K 89Google Scholar
  16. 16.
    A. Mathiot and J.F. Petroff (1974) Mat. Res. Bull. 9, 319.CrossRefGoogle Scholar
  17. 17.
    A. Mathiot and J.F. Petroff (1976) J. Appl. Phys. 47, 1639.ADSCrossRefGoogle Scholar
  18. 18.
    B. Nest and G. Sorensen (1966) Phil. Mag. 13, 1075ADSCrossRefGoogle Scholar
  19. 19.
    B. Nost, G. Sorensen and E. Nes (1967) in Crystal Growth (ed. H. Steffen Peiser) Pergamon Press p. 801Google Scholar
  20. 20.
    B. NOst, G. Sorensen and E. Nes (1967) J. Crystal Growth 1, 149.ADSCrossRefGoogle Scholar
  21. 21.
    S. Kume and N. Kato (1974) J. Appl. Cryst. 7, 427CrossRefGoogle Scholar
  22. 22.
    B. Nost and E. Nes (1969) Acta. Met. 17, 13.CrossRefGoogle Scholar
  23. 23.
    Rustad and 0. Lohne (1971) Phys. Stat. Sol. (a) 6, 153Google Scholar
  24. 24.
    S. Oki and K. Futagami (1974) Japan J. Appl. Phys. 13, 605.ADSCrossRefGoogle Scholar
  25. 25.
    S. Oki and K. Futagami (1969) Japan J. Appl. Phys. 8, 1574.ADSCrossRefGoogle Scholar
  26. 26.
    D.K. Bowen and J. Miltat (1976) J. Phys. E. 9, 868.ADSCrossRefGoogle Scholar
  27. 27.
    F.W. Young Jr. and F.A. Sherrill (1971) J. Appl. Phys. 42, 230.ADSCrossRefGoogle Scholar
  28. 28.
    F. Minari, B. Pichaud and L. Capella (1975) Phil. Mag. 31, 275.ADSCrossRefGoogle Scholar
  29. 29.
    J. Kellerhals, F. Minari and B. Pichaud (1979) Phil. Mag. A. 39, 341.ADSCrossRefGoogle Scholar
  30. 30.
    Nittono (1971) Japan J. Appl. Phys. 10, 188.Google Scholar
  31. 31.
    A. Fukuda and A. Higashi (1973) Crystal Lattice Defects 4, 203.Google Scholar
  32. 32.
    C. Jourdan and M. Sauvage (1970) Phys. Stat. Sol. (a) 3, 343.ADSCrossRefGoogle Scholar
  33. 33.
    R. Fiedler and A.R. Lang (1972) J. Mater. Sci. 7, 531.ADSCrossRefGoogle Scholar
  34. 34.
    C. G’ Sell and G. Champier (1975) Phil. Mag. 32, 283.ADSCrossRefGoogle Scholar
  35. 35.
    B. Roessler and S.J. Burns (1978) Phys. Stat. Sol. (a) 24, 285.ADSCrossRefGoogle Scholar
  36. 36.
    A. Higashi (1974) J. Crystal Growth 24/25 102.ADSCrossRefGoogle Scholar
  37. 37.
    G. Mair and H. Wenzl (1976) Kristall und Technik 11, 1059.Google Scholar
  38. 38.
    H. Wenzl and G. Mair (1975) Z. Phys. B. 21 95.ADSCrossRefGoogle Scholar
  39. 39.
    W. Hagen and H.J. Queisser (1978) Appl. Phys. Lett 32, 269.ADSCrossRefGoogle Scholar
  40. 40.
    J. Chikawa and I. Fujimoto (1968) Appl. Phys. Lett. 13, 387.ADSCrossRefGoogle Scholar
  41. 41.
    J. Chikawa (1974) J. Crystal Growth 24/25 61.ADSCrossRefGoogle Scholar
  42. 42.
    J. Chikawa and S. Shirai (1977) J. Crystal Growth 39, 328.ADSCrossRefGoogle Scholar
  43. 43.
    J. Chikawa (1978) J. Japan. Assoc. Crystal Growth 5, 141.Google Scholar
  44. 44.
    J. Chikawa and S. Shirai (1979) Japan. J. Appl. Phys. 18, (suppl. 18–1) 153.Google Scholar
  45. 45.
    M. Hart (1975) J. Appl. Cryst. 8, 436.CrossRefGoogle Scholar
  46. 46.
    B.K. Tanner, D. Midgley and M. Safa (1977) J. Appl. Cryst. 10, 281CrossRefGoogle Scholar
  47. 47.
    B.K. Tanner, M. Safa and D. Midgley (1977) J. Appl. Cryst. 10, 91.CrossRefGoogle Scholar
  48. 48.
    J. Bordas, A.M. Glazer and H. Hauser (1975) Phil. Mag. 32, 471.ADSCrossRefGoogle Scholar
  49. 49.
    I.T. Steinberger, J. Bordas and Z.S. Kalman (1977). Phil. Mag. 35, 1257.ADSCrossRefGoogle Scholar
  50. 50.
    B.K. Tanner, M. Safa, D. Midgley and J. Bordas (1976) J. Magn. Mag. Materials 1 337.ADSCrossRefGoogle Scholar
  51. 51.
    M. Safa and B.K. Tanner (1977) Physica 86–88 B 347.Google Scholar
  52. 52.
    M. Safa and B.K. Tanner (1978) Phil. Mag. B 37 739.CrossRefGoogle Scholar
  53. 53.
    G.F. Clark and B.K. Tanner (1980) Phys. Stat. Sol.(a) 59, 241 54. I.B. MacCormack and B.K. Tanner (1978) J. Appl. Cryst. 11 O.Google Scholar
  54. 55.
    J. Gastaldi and C. Jourdan (1978) Phys. Stat. Sol. (a) 49 529.ADSCrossRefGoogle Scholar
  55. 56.
    J. Miltat (1978) Nuclear Inst. and Methods 152, 323.ADSCrossRefGoogle Scholar
  56. 57.
    Z.H. Kalman I.T. Steinberger and S.S. Hasnain (1979) J. Appl. Cryst. (in press).Google Scholar
  57. 58.
    J.D. Stephenson, V. Kelha, M. Tilli and T. Tuomi (1979) Phys. Stat. Sol (a) 51 93.ADSCrossRefGoogle Scholar
  58. 59.
    J.D. Stephenson, T. Tuomi, V. Kelha and M. Tilli (1979) Phys. Stat. Sol. (a) 53, 271.ADSCrossRefGoogle Scholar
  59. 60.
    Y. Chikaura and B.K. Tanner (1978) Jap. J. Appl. Phys. 18, 1389.ADSCrossRefGoogle Scholar
  60. 61.
    G.F. Clark, B.K. Tanner, R.S. Sery and H.T. Savage (1979) J. de. Phys. 40, C5–183.Google Scholar
  61. 62.
    J. Miltat and D.K. Bowen (1979) J. de Phys. 40, 389.CrossRefGoogle Scholar
  62. 63.
    I.M. Buckley - Golder and B.K. Tanner. Daresbury Preprint DL/SCI/P207E (Phil. Mag. in press)Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • B. K. Tanner

There are no affiliations available

Personalised recommendations