Laboratory Techniques for X-ray Reflection Topography

  • R. W. Armstrong
Part of the Nato Advanced Study Institutes Series book series (NSSB, volume 63)

Abstract

When a real crystal is set at the Bragg condition, the surface layer reflects X-rays non-uniformly, to an extent which depends on the deviation from flatness of the crystal surface and on the microstructural features of the sub-surface crystal volume. To make use of this occurrence, a number of experimental techniques have been developed for obtaining topographic images of the X-ray intensity reflected over any crystal surface area and for tracing local variations in the reflected intensity on a point by point basis back to the combined surface features and internal microstructure of the material. The full range of wave length conditions accessible in the laboratory are covered by the techniques involving, say, characteristic K radiation (the Berg [1] — Barrett [2] technique, penetrating polychromatic radiation)the Schultz [3] technique), or, most sensitively, crystal monochromated radiation, say, as utilized by Bonse [4].

Keywords

Dislocation Loop Subgrain Boundary Twist Section Lithium Fluoride Individual Dislocation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Berg (1931) Naturwissenschaften 19, 391ADSCrossRefGoogle Scholar
  2. W. Berg (1931) Z. Krist. 89, 286Google Scholar
  3. 2.
    C.S. Barrett (1945) Trans AIME 161, 15Google Scholar
  4. 3.
    L.G. Schulz (1954) Trans AIME 200, 1082Google Scholar
  5. 4.
    U. Bonse (1958) Z. Phys. 153, 278 (1962) in Direct Observation of Imperfections in Crystals (eds. J.B. Newkirk and J.H. Wernick), Interscience Publishers, New York, p431Google Scholar
  6. U. Bonse (1964) Z. Phys, 177, 543ADSCrossRefGoogle Scholar
  7. 5.
    J.B. Newkirk(1958) Phys. Rev. 110, 1465ADSCrossRefGoogle Scholar
  8. J.B. Newkirk (1959) Trans AIME 215, 483Google Scholar
  9. 6.
    E.N. Farabaugh, H.S. Parker and R.W. Armstrong (1973) J. Appl. Cryst 6, 482Google Scholar
  10. 7.
    R.W. Armstrong and C.Cm. Wu (1973) in Microstructural Analysis: Tools and Techniques (eds. J.L. McCall and W.M. Mueller), Plenum Press, New York, p. 169Google Scholar
  11. 8.
    E.N. Farabaugh (1977) Ph.D. Thesis, University of MarylandGoogle Scholar
  12. 9.
    J.M. Schultz and R.W. Armstrong (1966) Acta Met. 14, 436CrossRefGoogle Scholar
  13. 10.
    A.P.L. Turner, T. Vreeland, Jr., and D.P Pope (1968) Acta Cryst. A24, 452CrossRefGoogle Scholar
  14. 11.
    A.R. Lang (1970) in Modern Diffraction and Imaging Techniques in Material Science (eds. S. Amelinckx, R. Gevers, G. Remaut and J. Van Landuyt), North- Holland Publishing Company Amersterdam, p.4O7Google Scholar
  15. 12.
    A. Authier, Ibid., p481Google Scholar
  16. 13.
    B.W. Batterman and H. Cole (1964) Rev. Mod Phys 36, 681MathSciNetADSCrossRefGoogle Scholar
  17. 14.
    R.W. James (1963) in Solid State Physics 15 (eds. F. Seitz and D. Turnbull). Academic Press, New York, p. 53Google Scholar
  18. 15.
    F.C. Frank and A.R. Lang (1965) in Physical Properties of Diamond (ed. R. Berman ), Oxford University Press, p. 69Google Scholar
  19. 16.
    A.R. Lang and M. Polcarova (1965) Proc. Roy. Soc.London 285, 297ADSCrossRefGoogle Scholar
  20. 17.
    B. Roessler and R.W. Armstrong (1969) in Adv. X-ray Anal. 12, (eds, C.S. Barrett, J.B. Newkirk and G.R. Mallett), Plenum Press, New York, p. 139Google Scholar
  21. 18.
    International Tables for X-ray Crystallography II Mathematical Tables (eds. J.S. Kasper and K. Lonsdale), [5] Physics of Diffraction Methods (ed. H. Lipson), Intern. Union of Cryst. (1959), Kynoch Press, Birmingham, p.235Google Scholar
  22. 19.
    R.W. James (1954) The Optical Principles of the Diffraction of X-rays, G. Bell and Sons, Ltd. London, p. 60Google Scholar
  23. 20.
    J.M. Schultz and R.W. Armstrong (1964) Phil. Mag. 10, 497ADSCrossRefGoogle Scholar
  24. 21.
    T. Vreeland, Jr. (1976) J. Appl. Cryst. 9, 34CrossRefGoogle Scholar
  25. 22.
    M. Kuriyama and T. Miyakawa (1970) Acta Cryst. A26, 667Google Scholar
  26. 23.
    S. Weissmann (1956) J. Appl. Phys 27, 389Google Scholar
  27. 24.
    S. Weissmann, Ibid., 1335Google Scholar
  28. 25.
    W. J. Boettinger, H.E. Burdette, M. Kuriyama and R.E. Green Jr. (1976) Rev. Sci. Instrum 47, 906Google Scholar
  29. 26.
    K. Kohra, H. Hashizume and J. Yoshimura (1970) Japan J. Appl. Phys 9, 1029Google Scholar
  30. 27.
    M. Kuriyama, W.J. Boettinger and H.E. Burdette (1978) J. Cryst. Growth 43, 287ADSCrossRefGoogle Scholar
  31. 28.
    R.W. Armstrong, W.J. Boettinger and M. Kuriyama (1979) in preparation.Google Scholar
  32. 29.
    Y. Nakayama, S. Weissmann and T. Imura (1962) in Direct Observation of Imperfections in Crystals (eds. J.B Newkirk and J.H. Wernick ), Interscience Publishers New York, p 573Google Scholar
  33. 30.
    A.R. Lang and V.F. Miuscov (1964) Phil. Mag 10, 263ADSCrossRefGoogle Scholar
  34. 31.
    S.J. Burns and O. Birau (1979) unpublished researchGoogle Scholar
  35. 32.
    C.Cm. Wu and R.W. Armstrong (1975) J. Appl. Cryst. 8, 29CrossRefGoogle Scholar
  36. 33.
    W. Bollmann (1964) in Dislocation in Solids, Discussion of the Faraday Society, 38, p26CrossRefGoogle Scholar
  37. 34.
    H. Fehmer and W. Uelhoff (1972) J.Cryst. Growth 13, 257ADSCrossRefGoogle Scholar
  38. 35.
    K.L. Bye (1979) J. Mater, Sci. 14, 619ADSCrossRefGoogle Scholar
  39. 36.
    K.L. Bye and R.S. Cosier, Ibid., 80037.Google Scholar
  40. 37.
    M.R. Achter, C.L. Vold and T.G. Digges, Jr. (1966) Trans TMS-AIME 236, 1597Google Scholar
  41. 38.
    R.W. Armstrong, C. Cm. Wu and E.N. Farabaugh (1977) in Adv. X-ray Anal. 20 (eds. H.F. McMurdie, C.S. Barrett, J.B. Newkirk and C.O. Ruud)Google Scholar
  42. 39.
    V.F.S. Yip and C.D. Brandle (1978), J. Amer. Ceram. Soc 61, 8Google Scholar
  43. 40.
    G.M. Arnstein (1972) Ph.D. Thesis, University of Maryland; (1972) G.M. Arnstein, P. Bolsaitis and R.W. Armstrong, Acta Cryst A28, 344Google Scholar
  44. 41.
    C. Bousquet, M. Lambert, A.M. Quittet and A. Guinier (1963) Acta Cryst. 16, 989CrossRefGoogle Scholar
  45. 42.
    B. Roessler and S.J. Burns (1974) Phys. Stat. Sol (a) 24, 285Google Scholar
  46. 43.
    C.G’Sell and G. Champier (1975) Phil. Mag 32, 283ADSCrossRefGoogle Scholar
  47. 44.
    K. -C. Yoo and B. Roessler (1979) unpublished research.Google Scholar
  48. 45.
    J.M. Schultz (1976) J. Mater. Sci. 11, 2258ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • R. W. Armstrong

There are no affiliations available

Personalised recommendations