The development of more powerful sources plays a major role in the overall improvement of X-ray techniques in general and of topography in particular. In recent years some progress has been made to increase the brightness and also the total photon flux of conventional sealed-off X-ray tubes. Rotating anode tubes have been developed to greater variety, to more reliability and to higher brightness and flux. Synchrotron radiation has entered the field of X-ray diffraction and, with the increasing availability of storage rings dedicated to the production of synchrotron X-rays will presumably replace conventional X-ray sources in many experiments in the near future. Compared with a conventional source a synchrotron source is rather costly and, in general, requires the individual experimenter to leave his home laboratory, transfer his equipment to the synchrotron radiation centre and start using X-rays as member of a ‘users community’ at the storage ring. Considering the amount of financial and organisational disadvantages experienced by the newcomer to the big facility it is very important to find out clearly whether the synchrotron source is better for the particular problem to be solved and how much it is better. With this respect the statement, the synchrotron source is ‘more intense’ is certainly not adequate, since, with this generality, it may not even be true in the particular case. Hence it is highly desirable to define the powerfulness of a source precisely.


Synchrotron Radiation Storage Ring Characteristic Line Electron Orbit Synchrotron Source 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. Wideroe (1951) Brown Boveri Mitt. 38, 260Google Scholar
  2. 2.
    K. Gund (1953) Stahl u. Eisen 73, 710Google Scholar
  3. 3.
    H. Kulenkampff (1922) Ann. Phys. 69, 548CrossRefGoogle Scholar
  4. 4.
    H. Kulenkampff (1926) Handbuch der Physik, edited by Geiger and Scheel, 23, pp. 433Google Scholar
  5. 5.
    H. Kulenkampff and L. Schmidt (1943) Ann. Phys. (5) 43, 494CrossRefGoogle Scholar
  6. 6.
    P. Kirkpatrick (1927) Phys. Rev. 22, 226ADSCrossRefGoogle Scholar
  7. 7.
    E. Wagner and P. Ott (1928) Ann. Phys. 85, 425CrossRefGoogle Scholar
  8. 8.
    W.W. Loebe (1914) Ann. Phys. 44, 1033Google Scholar
  9. 9.
    M. Green (1963) in X-ray Optics and Microanalysis, (ed. H.H. Pattee, V.E. Cosslett and A. Engström) Academic Press, New York and London, p. 185Google Scholar
  10. 10.
    M. Green and V. E. Cosslett (1961) Proc. Phys. Soc. ( London ) 73, 924Google Scholar
  11. 11.
    J. A. Bearden (1974) in International Tables for X-ray Crystallography Vol. IV (ed. J.A. Ibers and W.C. Hamilton), The Kynoch Press, Birmingham, p. 20Google Scholar
  12. 12.
    M. Green (1963) in X-ray Optics and Microanalysis, (ed. H.H. Pattee, V.E. Cosslett and A. Engstrom) Academic Press, New York and London, p. 361Google Scholar
  13. 13.
    A.E. Sandstrom (1957) in Handbuch der Physik 30, edited by S. Flugge, Springer Verlag Berlin, Gottingen, Heidelberg, pp. 78Google Scholar
  14. 14.
    W. Rump (1927) Z. Physik 43, 254ADSCrossRefGoogle Scholar
  15. 15.
    H.A. Kramers (1923) Phil. Nag. 46, 836Google Scholar
  16. 16.
    M. Yoshimatsu and S. Kozaki (1977) in X-ray Optics, Topics in Applied Physics Vol. 22 (ed. 11.-J. Queisser) Springer Verlag Berlin, Heidelberg, New York, p. 7Google Scholar
  17. 17.
    J. Schwinger (1949) Phys. Rev. 75, 798ADSGoogle Scholar
  18. 18.
    T. Tuomi, K. Naukkarinen, E. Laurila and P. Rabe (1973) Acta polytech. Scand. Ph100, 1Google Scholar
  19. 19.
    T. Tuomi, K. Naukkarinen and P. Rabe (1974), Phys. Stat. Sol. (a) 25, 93Google Scholar
  20. 20.
    M. Hart (1975) J. Appl. Crystallogr. 8, 436Google Scholar
  21. 21.
    U. Bonse and G. Materlik (1975) in Anomalous Scattering (ed. by S. Rameseshan and S.C. Abrahams) Mungsgaard Kopenhagen, p. 107Google Scholar
  22. 22.
    P. Eisenberger and B.M. Kincaid (1975) Chem. Phys. Lett. 36, 134Google Scholar
  23. 23.
    J. Barrington Leigh and C. Rosenbaum (1974) J. Appl. Crystallogr. 7, 117Google Scholar
  24. 24.
    L. Lindau, P. Pianetta, K.Y. Yu and W.W. Spicer (1976) Phys. Rev. BB13, 492Google Scholar
  25. 25.
    W. Gudat and C. Kunz (1979) in Synchrotron Radiation, Techniques and Applications (ed. by C. Kunz), Topics in Current Physics, Vol. 10, Springer Verlag Berlin, Heidelberg, New York, p. 55Google Scholar
  26. 26.
    Y. Farge (ed.) (1979) Feasibility Study for a European Synchrotron Radiation Facility, European Science Foundation, StrasburgGoogle Scholar
  27. 27.
    J.R. Stevenson, H. Ellis and R. Bartlett (1973) Applied Optics 12, 2884ADSCrossRefGoogle Scholar
  28. 28.
    D. Einfeld and D. Stuck (1976) Opt. Comm. 19, 197CrossRefGoogle Scholar
  29. 29.
    E. Pitz (1969) Appl. Opt. 8, 255ADSCrossRefGoogle Scholar
  30. 30.
    R. Haensel and C. Kunz (1967) Z. Angew. Phys. 23, 276Google Scholar
  31. 31.
    R. Godwin (1969) in Springer Tracts in Modern Physics Vol. 51 (ed. by G. Hohler) Springer Verlag Berlin, Heidelberg, New YorkGoogle Scholar
  32. 32.
    C. Kunz (ed.) (1979) Synchrotron Radiation, Techniques and Applications, Topics in Current Physics Vol. 10, Springer Verlag Berlin, Heidelberg, New YorkGoogle Scholar
  33. 33.
    J. Schwinger (1949) Phys. Rev. 75, 1912MathSciNetADSzbMATHCrossRefGoogle Scholar
  34. 34.
    D.H. Tomboulian and P.L. Hartmann (1956) Phys. Rev. 102, 1423ADSCrossRefGoogle Scholar
  35. 35.
    J.D. Jackson (1975) Classical Electrodynamics, John Wiled, New York, London, Sydney, Toronto, p. 676Google Scholar
  36. 36.
    H.B. Stuhrmann (1978) Quarterly Review of Biophysics II, I., 71Google Scholar
  37. 37.
    J. Barrington Leigh and C. Rosenbaum (1976) Ann. Rev. Biophysics and Bioengineering 5, 239Google Scholar
  38. 38.
    H. Winnick and R. Hehn (1978) Nucl. Instr. Meth. 152, 9Google Scholar
  39. 39.
    D.E. Baynham, P.T.M. Clee and D.J. Thompson (1978) Nucl. Inst. Meth. 152, 31Google Scholar
  40. 40.
    H. Motz (1951) J. Appl. Phys. 22, 527Google Scholar
  41. 41.
    D.F. Alferov, Yu A. Bashmakov and O.G. Bessenov (1976) in Synchrotron Radiation, Lebedev Phys. Inst. Series 80 (ed. N.G. Basov) New York Consultants Bureau, p. 97Google Scholar
  42. 42.
    A. Hofmann (1978) Nucl. Instr. Meth. 152, 17Google Scholar
  43. 43.
    D.F. Alferov, Yu A. Bashmakov and E.G. Bessonov ( 1974; Sov. Phys. Tech. Phys. 18, 1336Google Scholar
  44. 44.
    L.R. Elias et al. (1976) Phys. Rev. Lett. 36, 717Google Scholar
  45. 45.
    B.M. Kincaid (1977) J. Appl. Phys. 48, 2684Google Scholar
  46. 46.
    J. A. Beaumont and M. Hart (1974) J. Phys. ( E) 7, 823Google Scholar
  47. 47.
    U. Bonse, G. Materlik and W. Schröder (1976) J. Appl. Cryst. 9, 223Google Scholar
  48. 48.
    J.V. Gilfrich, P.G. Burkhalter, R.R. Whitlock, E.S. Warden and L.S. Birks (1971) Anal. Chemistry 43, 934CrossRefGoogle Scholar
  49. 49.
    D.B. Brown and J.V. Gilfrich (1971) J. Appl. Phys. 42, 4044Google Scholar
  50. 50.
    D.B. Brown, J.V. Gilfrich and M.C. Peckerar (1975) J. Appl. Phys. 46, 4537Google Scholar
  51. 51.
    C.M. Dozier, D.B. Brown and J.W. Criss (1978) IEEE Transact. on Nucl. Science ns-25 1634Google Scholar

Copyright information

© Springer Science+Business Media New York 1980

Authors and Affiliations

  • U. Bonse

There are no affiliations available

Personalised recommendations