Infrared Photoconductivity

  • E. H. Putley
Part of the Optical Physics and Engineering book series (OPEG)


In the majority of topics discussed in this book it is tacitly assumed that we are studying the interactions between electromagnetic radiation and solids in order to obtain a fuller knowledge of the behavior of various solids of interest. Here, we will consider things from the opposite direction and discuss how photoconductive effects may be used to detect and measure infrared radiation.


Recombination Process Impurity Center Noise Equivalent Power Intrinsic Carrier Concentration Planck Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Smith, F. E. Jones, and R. P. Chasmar, The Detection and Measurement of Infra-red Radiation, Oxford University Press (Oxford), 1957.Google Scholar
  2. 2.
    P. W. Kruse, L. D. McGlauchlin, and R. B. McQuistan, Elements of Infrared Technology, John Wiley & Sons (New York), 1962.Google Scholar
  3. 3.
    T. P. McLean and E. H. Putley, Roy. Radar Establishment J., No. 52, p. 5, April 1965.Google Scholar
  4. 4.
    C. T. J. Alkemade, Physica 25: 1145 (1959).ADSCrossRefGoogle Scholar
  5. 5.
    E. H. Putley, Infrared Phys. 4: 1 (1964).ADSCrossRefGoogle Scholar
  6. 6.
    E. H. Putley, Phys. Status Solidi 6: 571 (1964).CrossRefGoogle Scholar
  7. 7.
    A. Rose, Concepts in Photoconductivity and Allied Problems, Interscience (New York), 1963.Google Scholar
  8. 8.
    F. D. Morten and R. E. J. King, Appl. Opt. 4: 659 (1965).ADSCrossRefGoogle Scholar
  9. 9.
    D. W. Goodwin and T. P. McLean, Proc. Phys. Soc. (London) B69: 689 (1956).ADSGoogle Scholar
  10. 10.
    R. N. Zitter, A. J. Strauss, and A. E. Attard, Phys. Rev. 115: 266 (1959).ADSCrossRefGoogle Scholar
  11. 11.
    R. A. Laff and H. Y. Fan, Phys. Rev. 121: 53 (1961).ADSCrossRefGoogle Scholar
  12. 12.
    A. R. Beattie and P. T. Landsberg, Proc. Roy. Soc. (London) A249: 16 (1958).ADSGoogle Scholar
  13. 13.
    J. Blakemore, Semiconductor Statistics, Pergamon Press (Oxford), 1962.zbMATHGoogle Scholar
  14. 14.
    K. M. Van Vliet, Proc. I.R.E. 46: 1004 (1958).CrossRefGoogle Scholar
  15. 15.
    E. H. Putley, J. Sci. Instr. 43: 857 (1966).ADSCrossRefGoogle Scholar
  16. 16.
    P. W. Kruse, Appl. Opt. 4: 687 (1965).ADSCrossRefGoogle Scholar
  17. 17.
    J. D. Dimmock, I. Melngailis, and A. J. Strauss, Phys. Rev. Letters 16: 1193 (1966).ADSCrossRefGoogle Scholar
  18. 18.
    E. Burstein, G. Picus, and N. Sciar, Atlantic City Photoconductivity Conference, John Wiley & Sons (New York), 1956, p. 353.Google Scholar
  19. 19.
    R. Novak, Fifth Conference of the International Commission for Optics, Stockholm, 1959.Google Scholar
  20. 20.
    E. H. Putley, Appl. Opt. 4: 649 (1965).ADSCrossRefGoogle Scholar
  21. 21.
    Sh. M. Kogan, Fiz. Tverd. Tela 4: 1891 (1962)Google Scholar
  22. Sh. M. Kogan, Soviet Phys. Solid State (English Transi.) 4: 1386 (1963).Google Scholar
  23. 22.
    M. A. C. S. Brown and M. F. Kimmitt, Infrared Phys. 5: 93 (1965).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • E. H. Putley
    • 1
  1. 1.Royal Radar EstablishmentMalvern, WorcestershireEngland

Personalised recommendations