Skip to main content

Optical Constants of Insulators: Dispersion Relations

  • Chapter
Optical Properties of Solids

Part of the book series: Optical Physics and Engineering ((OPEG))

Abstract

The optical behavior of an optically isotropic solid (e.g., a cubic crystal) is determined by the spectral dependence of two parameters: the real and the imaginary part of the refractive index n = n r +in i (n i is usually referred to as k in the literature and called the extinction index), or the real and the imaginary part of the dielectric constant ε = ε r + i . The two spectral functions which determine the optical behavior are most readily determined by measuring the transmission and the reflection of a plane-parallel slab as a function of frequency [1]. In the region of interband transitions, however, the absorption coefficient reaches very large values (105−106 cm−1) and the preparation of single-crystal samples thin enough for transmission measurements becomes extremely difficult [2]. Because of the large number of imperfections associated with vacuum-deposited samples, thin films prepared by this method are not very trustworthy for optical measurements, although progress has been made recently by using epitaxial deposition methods [3]. Absorption in the substrate or film backing can also become a problem, especially in the far ultraviolet region, and therefore techniques based exclusively on reflection measurements have been most widely used for the determination of optical constants in the region of electronic interband transitions of metals, semiconductors, and insulators. The same considerations apply to the intraband (or free-carrier) absorption in metals [4], since the corresponding absorption coefficients are also very high.

Alfred P. Sloan Fellow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. T. S. Moss, Optical Properties of Semiconductors, Butterworth’s Scientific Publications (London), 1959.

    Google Scholar 

  2. G. Harbeke, Z. Naturforsch. 19: 548 (1964).

    ADS  Google Scholar 

  3. R. B. Schoolar and J. R. Dixon, Phys. Rev. 137: A667 (1965).

    Article  ADS  Google Scholar 

  4. M. Cardona and D. L. Greenaway, Phys. Rev. 133: A1685 (1964).

    Article  ADS  Google Scholar 

  5. B. R. Cooper, H. Ehrenreich, and H. R. Phillipp, Phys. Rev. 138: A494 (1965).

    Article  ADS  Google Scholar 

  6. D. G. Avery, Proc. Phys. Soc. B65: 425 (1952).

    Google Scholar 

  7. R. J. Archer, Phys. Rev. 110: 354 (1958).

    Article  ADS  Google Scholar 

  8. H. A. Kramers, Atti del Congresso Internazionale dei Fisici, Sept. 1927, Como-PaviaRoma (Nicola Zanichelli, Bologna) 2: 545 (1928);

    Google Scholar 

  9. R. de L. Kronig, J. Opt. Soc. Am. 12: 547 (1926).

    Article  Google Scholar 

  10. F. Stern, Solid State Physics, Vol. 15, in: F. Seitz and D. Turnbull (eds.), Academic Press (New York), 1963, p. 300.

    Google Scholar 

  11. J. S. Toll, Phys. Rev. 104: 1760 (1956).

    Article  MathSciNet  ADS  Google Scholar 

  12. E. C. Titchmarsh, Theory of Fourier Integrals, Clarendon Press (Oxford), 1948 (second edition), pp. 119–128.

    Google Scholar 

  13. Y. Nishina, J. Kotodziejczak, and B. Lax, Phys. Rev. Letters 9:55 (1962). J. Kolodziejczak, B. Lax, and Y. Nishina, Phys. Rev. 128: 2655 (1962).

    MATH  Google Scholar 

  14. B. Velicky, Czech.J. Phys. B11: 541 (1961).

    Article  ADS  Google Scholar 

  15. H. R. Phillipp and E. A. Taft, Phys. Rev. 113: 1002 (1959);

    Article  ADS  Google Scholar 

  16. M. P. Rimmer and D. L. Dexter, J. Appl. Phys. 31: 775 (1960);

    Article  ADS  Google Scholar 

  17. T. S. Robinson, Proc. Phys. Soc. (London) B65: 910 (1952).

    Google Scholar 

  18. M. Cardona and D.L. Greenaway, Phys. Rev. 133: A1685 (1964).

    Article  ADS  Google Scholar 

  19. M. Cardona, J. Appl. Phys. 36: 2181 (1965).

    Article  ADS  Google Scholar 

  20. B. O. Seraphin, “Electroreflectance,” in: Optical Properties of Solids, S. Nudelman and S. S. Mitra (eds.), Plenum Press (New York), 1968.

    Google Scholar 

  21. K. L. Shaklee, F. H. Pollak, and M. Cardona,Phys. Rev. Letters 15: 883 (1965).

    Article  ADS  Google Scholar 

  22. M. Cardona, F. H. Pollak, and K. L. Shaklee, Phys. Rev. (to be published).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Cardona, M. (1969). Optical Constants of Insulators: Dispersion Relations. In: Nudelman, S., Mitra, S.S. (eds) Optical Properties of Solids. Optical Physics and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1123-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1123-3_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1125-7

  • Online ISBN: 978-1-4757-1123-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics