Skip to main content

Spectra of Ions in Crystals

  • Chapter
Optical Properties of Solids

Part of the book series: Optical Physics and Engineering ((OPEG))

Abstract

The absorption and emission spectra for ions in solids are usually explained today in terms of the crystal field theory, or ligand field theory, as it is sometimes called.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Becquerel, Z. Physik 58: 205 (1929).

    Article  ADS  MATH  Google Scholar 

  2. H. Bethe, Ann. Physik 3 (5): 135 (1929).

    Google Scholar 

  3. H. A. Kramers, Proc. Acad. Sci. Amsterdam 33: 953 (1930).

    MATH  Google Scholar 

  4. J. H. Van Vleck and A. Sherman, Rev. Mod. Phys. 7:167 (1935); J. H. Van Vleck, Theory of Magnetic and Electric Susceptibilities, Oxford University Press (Oxford), 1932.

    Google Scholar 

  5. Y. Tanabe and S. Sugano, J. Phys. Soc. Japan 9:733 (1954); J. Phys. Soc. Japan 9: 766 (1954).

    Google Scholar 

  6. L. Orgel, Chemistry of Transition Metal Complexes, Methuen (London), 1960.

    Google Scholar 

  7. J. S. Griffith, Theory of Transition Metal Ions, Cambridge University Press (London), 1961.

    Google Scholar 

  8. C. J. Ballhausen, Introduction to Ligand Field Theory, McGraw-Hill (New York), 1962.

    Google Scholar 

  9. C. K. Jorgensen, Absorption Spectra and Chemical Bonding in Complexes, Pergamon Press (London), 1962.

    Google Scholar 

  10. F. A. Cotton, Chemical Application of Group Theory, Interscience (New York ), 1963.

    Google Scholar 

  11. B. N. Figgis, Introduction to Ligand Fields, Interscience (New York ), 1966.

    Google Scholar 

  12. F. Hund, Z. Physik 33: 345 (1925).

    Article  ADS  MATH  Google Scholar 

  13. A. Landé, Z. Physik 15:189 (1923); 19: 112 (1923).

    Google Scholar 

  14. J. C. Slater, Quantum Theory of Atomic Structure, McGraw-Hill (New York), 1960.

    Google Scholar 

  15. K. W. H. Stevens, Proc. Phys. Soc. (London) A65: 209 (1952).

    MATH  Google Scholar 

  16. E. P. Wigner, Group Theory and its Applications to the Quantum Mechanics of Atomic Spectra, Academic Press (New York), 1959.

    Google Scholar 

  17. E. Fick and G. Joos, in: S. Flügge (ed.), Handbuch der Physik, Vol. 28, Spectroscopy II, Springer (Berlin), 1957, p. 246 et seq.

    Google Scholar 

  18. J. L. Prather, “Atomic Energy Levels in Crystals,” Natl. Bur. Std. (U.S.) Monograph 19 (1961). (Available from Superintendent of Documents, U.S. Government Printing Office, Washington 25, D.C.)

    Google Scholar 

  19. J. C. Eisenstein, J. Chem. Phys. 34:1628 (1961); Errata, J. Chem. Phys. 35: 2246 (1961).

    Article  ADS  Google Scholar 

  20. Y. Tanabe and H. Kamimura, J. Phys. Soc. Japan 13: 394 (1958).

    Article  ADS  Google Scholar 

  21. J. S. Griffith, Trans. Faraday Soc. 54:1109 (1958); 56: 193 (1960).

    Article  Google Scholar 

  22. A. D. Liehr and C. J. Ballhausen, Ann.Phys. (N. Y.) 6: 134 (1959).

    Article  ADS  Google Scholar 

  23. A. D. Liehr, J. Phys. Chem. 67: 1314 (1963).

    Google Scholar 

  24. R. N. Enwema, J. Chem. Phys. 42: 892 (1965).

    Article  ADS  Google Scholar 

  25. G. F. Koster, J. O. Dimmock, R. G. Wheeler, and H. Statz, Properties of the 32 Point Groups, MIT Press (Cambridge, Massachusetts ), 1963.

    Google Scholar 

  26. O. Laporte, Z. Physik 23: 135 (1924).

    Article  ADS  Google Scholar 

  27. D. L. Wood, J. Ferguson, K. Knox, and J. F. Dillon, Jr., J. Chem. Phys. 39: 890 (1963).

    Article  ADS  Google Scholar 

  28. C. E. Moore, Natl. Bur. Std. (U.S.) Circ. 467, Vol. II, 16 (1950).

    Google Scholar 

  29. J. Ferguson, K. Knox, and D. L. Wood, J. Chem. Phys. 35:2236 (1961); Erratum, J. Chem. Phys. 37: 193 (1962).

    Google Scholar 

  30. D. L. Wood and J. P. Remeika, J. Chem. Phys. 46: 3595 (1967).

    Article  ADS  Google Scholar 

  31. M. Rotenberg, R. Bivins, N. Metropolis, and J. K. Wooten, Jr., The 3-j and 6-j Symbols, The Technology Press (MIT, Cambridge, Massachusetts ), 1959.

    Google Scholar 

  32. M. T. Hutchings, Solid State Phys. 16: 227 (1964).

    Article  Google Scholar 

  33. D. M. Dodd and D. L. Wood, Proc. Intern. Symp. on Mol. Structure and Spectroscopy, Science Council of Japan, Tokyo, 1962, p. A406.

    Google Scholar 

  34. R. A. Satten and J. S. Margolis, J. Chem. Phys. 32: 573 (1960).

    Article  ADS  Google Scholar 

  35. R. Pappalardo, J. Chem. Phys. 34: 1380 (1961).

    Article  ADS  Google Scholar 

  36. D. L. Wood and W. Kaiser, Phys. Rev. 126: 2079 (1962).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Wood, D.L. (1969). Spectra of Ions in Crystals. In: Nudelman, S., Mitra, S.S. (eds) Optical Properties of Solids. Optical Physics and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1123-3_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1123-3_19

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1125-7

  • Online ISBN: 978-1-4757-1123-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics