Electronic Spectra of Molecular Crystals

  • Donald S. McClure
Part of the Optical Physics and Engineering book series (OPEG)


Before any experimental data on molecular crystals had become available, Frenkel [1–4] had formulated a theory of electronic energy levels of weakly interacting systems. He began with the tight binding approximation; the wave functions and energy levels of each molecule are unchanged from the free state; and, upon formation of the crystal, each state is shifted and split into a band of closely spaced levels. The electronic spectra of organic crystals, such as benzene and anthracene, show the features expected from Frenkel’s theory, namely, the energy levels appear to be almost those of the free molecules, but band shifts and splittings are observed. Other examples of weakly interacting systems are the d-shell states of MnF2 [5–7] or Cr2O3 [8] and f-shell states of PrC13, etc. “Molecules” such as MnO4 in KMnO4 or CO3 2− in CaCO3 are weakly interacting in their lower electronic levels. In addition, molecules and molecular ions are also weakly interacting in their vibrational levels, and a Frenkel-type theory applies to these.


Electronic Spectrum Molecular Crystal Transition Moment Molecular Transition Crystal State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Frenkel, Phys. Rev. 37: 17, 1276 (1931).ADSzbMATHCrossRefGoogle Scholar
  2. 2.
    J. Frenkel, Physik. Z. Sowjetunion 9: 158 (1936).zbMATHGoogle Scholar
  3. 3.
    R. Peierls, Ann. Physik 13: 905 (1932).ADSCrossRefGoogle Scholar
  4. 4.
    F. Seitz, Modern Theory of Solids, McGraw-Hill Book Co. ( New York ), 1940, pp. 414–416.zbMATHGoogle Scholar
  5. 5.
    J. W. Stout, J. Chem. Phys. 31: 709 (1959).ADSCrossRefGoogle Scholar
  6. 6.
    R. L. Greene, D. D. Sell, W. M. Yen, A. L. Schawlow, and R. M. White, Phys. Rev. Letters 15: 656 (1965).ADSCrossRefGoogle Scholar
  7. 7.
    P. G. Russell, D. S. McClure, and J. W. Stout, Phys. Rev. Letters 16: 176 (1966).ADSCrossRefGoogle Scholar
  8. 8.
    D. S. McClure, J. Chem. Phys. 38: 2289 (1963).ADSCrossRefGoogle Scholar
  9. 9.
    G. Baldini, Phys. Rev. 128: 1562 (1962).ADSCrossRefGoogle Scholar
  10. 10.
    J. C. Phillips, Phys. Rev. 136: A1714 (1964).ADSCrossRefGoogle Scholar
  11. 11.
    D. S. McClure, Can. J. Chem. 36: 59 (1958).CrossRefGoogle Scholar
  12. 12.
    D. S. McClure and O. Schnepp, J. Chem. Phys. 23: 1575 (1955).ADSCrossRefGoogle Scholar
  13. 13.
    D. P. Craig, L. E. Lyons, and J. R. Walsh, Mol. Phys. 4: 97 (1961).ADSCrossRefGoogle Scholar
  14. 14.
    D. S. McClure, J. Chem. Phys. 22: 1668 (1954).ADSCrossRefGoogle Scholar
  15. 15.
    D. P. Craig and S. H. Walmsley, Mol. Phys. 4: 113 (1961).ADSCrossRefGoogle Scholar
  16. 16.
    A. S. Davydov, J. Exptl. Theoret. Phys. (U.S.S.R.) 18: 210 (1948).Google Scholar
  17. 17.
    O. Schnepp, Ann. Rev. Phys. Chem. 14: 35 (1963).ADSCrossRefGoogle Scholar
  18. 18.
    D. S. McClure, Solid State Phys. 8: 1 (1959).CrossRefGoogle Scholar
  19. 19.
    A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill Book Co. ( New York ), 1962.Google Scholar
  20. 20.
    D. P. Craig and S. H. Walmsley, in: D. Fox, M. M. Labes, and A. Weissberger (eds.), Physics and Chemistry of the Organic Solid State, Vol. I, Interscience (New York), 1963.Google Scholar
  21. 21.
    R. Silbey, J. Jortner, M. T. Vala, Jr., and S. A. Rice, J. Chem. Phys. 42: 2948 (1965).ADSCrossRefGoogle Scholar
  22. 22.
    W. R. Heller and A. Marcus, Phys. Rev. 84: 809 (1951).ADSzbMATHCrossRefGoogle Scholar
  23. 23.
    R. Silbey, J. Jortner, and S. A. Rice, J. Chem. Phys. 42: 1515 (1965).ADSCrossRefGoogle Scholar
  24. 24.
    J. Jortner, S. A. Rice, J. L. Katz, and Sangilchoi, J. Chem. Phys. 42: 54 (1965).CrossRefGoogle Scholar
  25. 25.
    H. Maria and A. Zahlan, J. Chem. Phys. 38: 941 (1963).ADSCrossRefGoogle Scholar
  26. 26.
    H. J. Maria, J. Chem. Phys. 40: 551 (1964).ADSCrossRefGoogle Scholar
  27. 27.
    B. Anex and W. T. Simpson, Rev. Mod. Phys. 32: 466 (1960).ADSCrossRefGoogle Scholar
  28. 28.
    M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford (New York), 1954.Google Scholar
  29. 29.
    Sang Il Choi, J. Jortner, S. A. Rice, and R. Silbey, J. Chem. Phys. 41: 3294 (1964).ADSCrossRefGoogle Scholar
  30. 30.
    R. S. Knox, The Theory of Excitons,“ Suppl. 5 in: F. Seitz and D. Turnbull (eds.), Solid State Physics, Academic Press (New York), 1963.Google Scholar

Copyright information

© Springer Science+Business Media New York 1969

Authors and Affiliations

  • Donald S. McClure
    • 1
  1. 1.Department of ChemistryUniversity of ChicagoChicagoUSA

Personalised recommendations