Skip to main content

Electronic Spectra of Molecular Crystals

  • Chapter
Optical Properties of Solids

Part of the book series: Optical Physics and Engineering ((OPEG))

  • 678 Accesses

Abstract

Before any experimental data on molecular crystals had become available, Frenkel [1–4] had formulated a theory of electronic energy levels of weakly interacting systems. He began with the tight binding approximation; the wave functions and energy levels of each molecule are unchanged from the free state; and, upon formation of the crystal, each state is shifted and split into a band of closely spaced levels. The electronic spectra of organic crystals, such as benzene and anthracene, show the features expected from Frenkel’s theory, namely, the energy levels appear to be almost those of the free molecules, but band shifts and splittings are observed. Other examples of weakly interacting systems are the d-shell states of MnF2 [5–7] or Cr2O3 [8] and f-shell states of PrC13, etc. “Molecules” such as MnO4 in KMnO4 or CO3 2− in CaCO3 are weakly interacting in their lower electronic levels. In addition, molecules and molecular ions are also weakly interacting in their vibrational levels, and a Frenkel-type theory applies to these.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Frenkel, Phys. Rev. 37: 17, 1276 (1931).

    Article  ADS  MATH  Google Scholar 

  2. J. Frenkel, Physik. Z. Sowjetunion 9: 158 (1936).

    MATH  Google Scholar 

  3. R. Peierls, Ann. Physik 13: 905 (1932).

    Article  ADS  Google Scholar 

  4. F. Seitz, Modern Theory of Solids, McGraw-Hill Book Co. ( New York ), 1940, pp. 414–416.

    MATH  Google Scholar 

  5. J. W. Stout, J. Chem. Phys. 31: 709 (1959).

    Article  ADS  Google Scholar 

  6. R. L. Greene, D. D. Sell, W. M. Yen, A. L. Schawlow, and R. M. White, Phys. Rev. Letters 15: 656 (1965).

    Article  ADS  Google Scholar 

  7. P. G. Russell, D. S. McClure, and J. W. Stout, Phys. Rev. Letters 16: 176 (1966).

    Article  ADS  Google Scholar 

  8. D. S. McClure, J. Chem. Phys. 38: 2289 (1963).

    Article  ADS  Google Scholar 

  9. G. Baldini, Phys. Rev. 128: 1562 (1962).

    Article  ADS  Google Scholar 

  10. J. C. Phillips, Phys. Rev. 136: A1714 (1964).

    Article  ADS  Google Scholar 

  11. D. S. McClure, Can. J. Chem. 36: 59 (1958).

    Article  Google Scholar 

  12. D. S. McClure and O. Schnepp, J. Chem. Phys. 23: 1575 (1955).

    Article  ADS  Google Scholar 

  13. D. P. Craig, L. E. Lyons, and J. R. Walsh, Mol. Phys. 4: 97 (1961).

    Article  ADS  Google Scholar 

  14. D. S. McClure, J. Chem. Phys. 22: 1668 (1954).

    Article  ADS  Google Scholar 

  15. D. P. Craig and S. H. Walmsley, Mol. Phys. 4: 113 (1961).

    Article  ADS  Google Scholar 

  16. A. S. Davydov, J. Exptl. Theoret. Phys. (U.S.S.R.) 18: 210 (1948).

    Google Scholar 

  17. O. Schnepp, Ann. Rev. Phys. Chem. 14: 35 (1963).

    Article  ADS  Google Scholar 

  18. D. S. McClure, Solid State Phys. 8: 1 (1959).

    Article  Google Scholar 

  19. A. S. Davydov, Theory of Molecular Excitons, McGraw-Hill Book Co. ( New York ), 1962.

    Google Scholar 

  20. D. P. Craig and S. H. Walmsley, in: D. Fox, M. M. Labes, and A. Weissberger (eds.), Physics and Chemistry of the Organic Solid State, Vol. I, Interscience (New York), 1963.

    Google Scholar 

  21. R. Silbey, J. Jortner, M. T. Vala, Jr., and S. A. Rice, J. Chem. Phys. 42: 2948 (1965).

    Article  ADS  Google Scholar 

  22. W. R. Heller and A. Marcus, Phys. Rev. 84: 809 (1951).

    Article  ADS  MATH  Google Scholar 

  23. R. Silbey, J. Jortner, and S. A. Rice, J. Chem. Phys. 42: 1515 (1965).

    Article  ADS  Google Scholar 

  24. J. Jortner, S. A. Rice, J. L. Katz, and Sangilchoi, J. Chem. Phys. 42: 54 (1965).

    Article  Google Scholar 

  25. H. Maria and A. Zahlan, J. Chem. Phys. 38: 941 (1963).

    Article  ADS  Google Scholar 

  26. H. J. Maria, J. Chem. Phys. 40: 551 (1964).

    Article  ADS  Google Scholar 

  27. B. Anex and W. T. Simpson, Rev. Mod. Phys. 32: 466 (1960).

    Article  ADS  Google Scholar 

  28. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford (New York), 1954.

    Google Scholar 

  29. Sang Il Choi, J. Jortner, S. A. Rice, and R. Silbey, J. Chem. Phys. 41: 3294 (1964).

    Article  ADS  Google Scholar 

  30. R. S. Knox, The Theory of Excitons,“ Suppl. 5 in: F. Seitz and D. Turnbull (eds.), Solid State Physics, Academic Press (New York), 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

McClure, D.S. (1969). Electronic Spectra of Molecular Crystals. In: Nudelman, S., Mitra, S.S. (eds) Optical Properties of Solids. Optical Physics and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1123-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1123-3_18

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1125-7

  • Online ISBN: 978-1-4757-1123-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics