Skip to main content

Lattice Vibrations

  • Chapter
  • 687 Accesses

Part of the book series: Optical Physics and Engineering ((OPEG))

Abstract

In a crystal with N atoms or ions, there exist 3(N − 1) lattice vibrations. For an insulator they can be derived, in principle, from the full Hamiltonian by using a Born—Oppenheimer treatment which separates these low-energy excitations from the comparatively high-lying electronic excitations. For a metal an even more complicated treatment which describes the dynamics of electrons and ions in a self-consistent way has to be used. Until now, no calculations existed from first principles, only some semi-empirical methods starting, e.g., from plausible lattice potentials (screened coulomb potential, Born—Mayer potential, etc.) with some parameters adjustable to match experimental data. In a rigorous treatment, one uses a formal development of the lattice potential in powers of the ion displacements. The expansion coefficients are restricted only by conservation laws and by the symmetry of the crystal, and they must be determined from experimental information. The harmonic approximation leads to the picture of free quasi-particles, called “phonons,” each of which is characterized by its energy ħω,crystal momentum ħq,and branch index j. As can be seen from inelastic neutron spectroscopy, this picture is usually well satisfied since the lifetime of phonons is of the order of 100 vibration periods. The far-reaching analogy between quantum-mechanical and classical harmonic oscillators allows for a classical description of plane waves progressing in the direction of the wave vector q. Thus, each lattice ion moves with the frequency ω and has an elliptic polarization which is uniquely related to the branch index j, but which has a simple form only in certain symmetry directions (transverse or longitudinal). The cubic and higher-order parts of the lattice potential cause complicated phonon-phonon interactions. In the following, we separate the static effects from the dynamical ones (phonon lifetime, infrared absorption, etc.). We therefore use a quasi-harmonic approximation [2] in which all single phonon quantities (frequencies, force constants, etc.) are considered at a fixed temperature and depend on it as a parameter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Born and K. Huang, Dynamical Theory of Crystal Lattices, Oxford University Press (London), 1954;

    Google Scholar 

  2. A. A. Maradudin, E. W. Montroll, and G. H. Weiss, “Theory of Lattice Dynamics in the Harmonic Approximation,” Solid State Phys. Suppl. 3 (1963);

    Google Scholar 

  3. W. Cochran, “Lattice Vibrations,” Rept. Progr. Phys. 26: 1 (1963).

    Article  ADS  Google Scholar 

  4. G. Leibfried and W. Ludwig, Solid State Phys. 12:276 (1961);

    Google Scholar 

  5. R. A. Cowley, Advan. Phys. 12: 421 (1963).

    Article  ADS  Google Scholar 

  6. L. van Hove, Phys. Rev. 89: 1189 (1953).

    Article  ADS  MATH  Google Scholar 

  7. J. C. Phillips, Phys. Rev. 104: 1263 (1956).

    Google Scholar 

  8. H. B. Rosenstock, Phys. Rev. 97: 290 (1955);

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. H. B. Rosenstock, J. Phys. Chem. Solids 2: 44 (1957).

    Article  MathSciNet  ADS  Google Scholar 

  10. F. Herman, J. Phys. Chem. Solids 8: 405 (1959).

    Article  ADS  Google Scholar 

  11. K. P. Tolpygo and U. S. Mashkevich, Soviet Phys. JETP (English Transi.) 5: 435 (1957).

    Google Scholar 

  12. W. Cohran, Proc. Roy. Soc. (London) A253: 260 (1959).

    Article  ADS  Google Scholar 

  13. J. R. Hardy, Phil. Mag. 4: 1278 (1959);

    Article  ADS  Google Scholar 

  14. J. R. Hardy and A. M. Karo, Phil. Mag. 5: 859 (1960).

    Article  ADS  Google Scholar 

  15. A. D. B. Woods, B. N. Brockhouse, R. A. Cowley, and W. Cochran, Phys. Rev. 131: 1025 (1963).

    Article  ADS  Google Scholar 

  16. B. N. Brockhouse and P. K. Iyengar, Phys. Rev. 111: 747 (1958);

    Article  ADS  Google Scholar 

  17. G. Dolling, in: Inelastic Scattering of Neutrons in Solids and Liquids, Vol. II, International Atomic Energy Agency (Vienna), 1965, p. 37;

    Google Scholar 

  18. J. L. Warren, G. R. Wenzel, and J. L. Yarnell, in: Inelastic Neutron Scattering, Vol. I, International Atomic Energy Agency (Vienna), 1965, p. 361.

    Google Scholar 

  19. G. Dolling and J. L. T. Waugh, Proc. Intern. Conf. Lattice Dynamics, R. F. Wallis (ed.), Copenhagen, 1963, p. 19.

    Google Scholar 

  20. R. A. Cowley, W. Cochran, B. N. Brockhouse, and A. D. B. Woods, Phys. Rev. 131: 1030 (1963).

    Article  ADS  Google Scholar 

  21. E. W. Kellermann, Phil. Trans. Roy. Soc. A238: S13 (1940).

    Google Scholar 

  22. U. Schröder, Solid State Comm. 4: 347 (1966).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1969 Springer Science+Business Media New York

About this chapter

Cite this chapter

Bilz, H. (1969). Lattice Vibrations. In: Nudelman, S., Mitra, S.S. (eds) Optical Properties of Solids. Optical Physics and Engineering. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1123-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1123-3_12

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1125-7

  • Online ISBN: 978-1-4757-1123-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics