Solution Growth

  • R. A. Laudise
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 5)


Crystal growth techniques can be classified into two broad groups—monocomponent and polycomponent methods.* In monocomponent methods only the chemical component forming the crystal is present in the growth system. In polycomponent methods an additional component has been added to the system. The usual reason for adding an additional component is to permit crystallization at a lower temperature than in a monocomponent system.† Among the reasons why crystallization at as low a temperature as possible is advantageous are: (1) to permit the direct growth of low-temperature polymorphs; (2) to avoid incongruent volatilization, incongruent melting, decomposition, or high vapor pressures at high temperature; (3) to minimize thermal gradients, strain caused by such gradients, and hence defects brought about by strain; (4) to reduce vacancy concentration; (5) to lower the solubility of impurities, to minimize reaction with containers, etc.; (6) to permit a dopant distribution impossible at a higher temperature (because of, for example, high dopant vapor pressure); and (7) for experimental convenience.


Grown Crystal Solution Growth Yttrium Iron Garnet Flux Evaporation Flux Growth 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. A. Laudise, The Growth of Single Crystals, Prentice-Hall, New York (1970).Google Scholar
  2. 2.
    J. J. Gilman (ed.), The Art and Science of Growing Crystals, Wiley, New York (1963).Google Scholar
  3. 3.
    H. E. Buckley, Crystal Growth, Wiley, New York (1951).Google Scholar
  4. 4.
    R. Roy and W. B. White, J. Cryst. Growth 3/4, 33 (1968).Google Scholar
  5. 5a.
    A. Holden and R. H. Thompson, Growing Crystals with a Rotary Crystallizer, Bell Telephone Laboratories, New York (1964).Google Scholar
  6. 5b.
    A. Holden and P. Singer, Crystals and Crystal Growing, Anchor-Doubleday, New York (1960).Google Scholar
  7. 6.
    T. G. Petrov, E. B. Treivus, and A. P. Kasatkin, Growing Crystals from Solution, Consultants Bureau, New York (1969).Google Scholar
  8. 7.
    E. D. Kolb, The Physics of Selenium and Tellurium (W. Charles Cooper, ed.), pp. 155ff, Pergamon, New York (1969).Google Scholar
  9. 8.
    E. D. Kolb and R. A. Laudise, J. Cryst. Growth 8, 191–196 (1971).CrossRefGoogle Scholar
  10. 9.
    H. K. Henisch, J. Dennis, and J. Hanoka, J. Phys. Chem. Solids 26, 493 (1965).CrossRefGoogle Scholar
  11. 10.
    A. F. Armington and J. J. O’Connor, Mat. Res. Bull. 2 (10), 907 (1967).CrossRefGoogle Scholar
  12. 11.
    S. D. Scott and H. L. Barnes, Mat. Res. Bull. 4, 897 (1969).CrossRefGoogle Scholar
  13. 12.
    A. F. Armington and J. J. O’Connor, J. Cryst. Growth 6, 278 (1970).CrossRefGoogle Scholar
  14. 13.
    Y. Toudic and R. Aumont, Compt. Rend. 269, 74 (1969).Google Scholar
  15. 14.
    T. Yamamoto, Bull. Inst. Phys. Chem. Res. (Tokyo) 17, 1278 (1938).Google Scholar
  16. 15.
    W. E. Gibbs and W. Clayton, Nature 113, 492 (1924).CrossRefGoogle Scholar
  17. 16.
    K. Nassau, J. Cryst. Growth, 15, 171 (1972).CrossRefGoogle Scholar
  18. 17.
    A. C. Walker and G. T. Kohman, Trans. Am. Inst. Elec. Eng. 67, 565 (1948).CrossRefGoogle Scholar
  19. 18.
    A. C. Walker, Bell Labs. Record 25, 357 (1947).Google Scholar
  20. 19.
    A. N. Holden, Disc. Faraday Soc. 5, 312 (1949).CrossRefGoogle Scholar
  21. 20.
    J. Shiever and K. Nassau, Mat. Res. Bull. 7, 613 (1972).CrossRefGoogle Scholar
  22. 21.
    H. K. Henisch, Crystal Growth in Gels, Penn. State Univ. Press, College Park, Pa. (1970).Google Scholar
  23. 22.
    H. K. Henisch, J. I. Hanoka, and J. Dennis, J. Electrochem. Soc. 112, 627 (1965).CrossRefGoogle Scholar
  24. 23.
    J. J. O’Connor, M. A. DiPietro, A. F. Armington, and B. Rubin, Nature 212, 68 (1966).CrossRefGoogle Scholar
  25. 24.
    I. Epelboin, F. Lenoir, and R. Wiart, p. 417; W. A. Schultze, p. 421; U. Bertocci, C. Bertocci, and B. C. Larson, p. 427; and E. Budevski, p. 93; in Crystal Growth 1971 ( R. A. Laudise, J. B. Mullin, and B. Mutaftschiev, eds.), North-Holland, Amsterdam (1972).Google Scholar
  26. 25.
    R. A. Laudise and J. W. Neilsen, in Solid State Physics (F. Seitz and D. Turnbull, eds.), Vol. XII, Academic, New York (1961).Google Scholar
  27. 26.
    R. A. Laudise, in Progress in Inorganic Chemistry (F. A. Cotton, ed.), Vol. III, p. 1, Wiley-Interscience, New York (1962).Google Scholar
  28. 27.
    R. Roy and O. F. Tuttle, Phys. Chem. Earth 1, 138 (1956).CrossRefGoogle Scholar
  29. 28.
    C. J. M. Rooymans, in Preparative Methods in Solid State Chemistry (P. Hagenmueller, ed.), pp. 71ff, Academic Press, New York (1972).Google Scholar
  30. 29.
    P. W. Bridgman, The Physics of High Pressure, Bell, London (1949).Google Scholar
  31. 30.
    E. D. Kolb, U.S. Pat. 3,271,114 (6 Sept. 1966 ).Google Scholar
  32. 31.
    G. W. Morey and P. Niggli, J. Am. Chem. Soc. 35, 1086 (1913).CrossRefGoogle Scholar
  33. 32.
    O. F. Tuttle, Geol. Soc. Am. Bull. 60, 1727 (1949).CrossRefGoogle Scholar
  34. 33.
    R. L. Barns, R. A. Laudise, and R. M. Shields, J. Phys. Chem. 67, 835 (1963).CrossRefGoogle Scholar
  35. 34.
    G. Erwin and E. F. Osborne, J. Geol. 59, 385 (1951).Google Scholar
  36. 35.
    E. M. Levin, C. R. Robbins, and H. F. McMurdie (eds.), Phase Diagrams for Ceramists,Vol. I (1964), Vol. II (1969), pp. 1926–1928, 4021, American Ceramic Soc.Google Scholar
  37. 36.
    R. A. Laudise and A. A. Ballman, J. Am. Chem. Soc. 80, 2655 (1958).CrossRefGoogle Scholar
  38. 37.
    R. A. Laudise, J. H. Crocket, and A. A. Ballman, J. Phys. Chem. 65, 359 (1961).CrossRefGoogle Scholar
  39. 38.
    R. A. Laudise and E. D. Kolb, Endeavour XXVIII [105], 114–117 (1969).Google Scholar
  40. 39.
    R. A. Laudise and A. A. Ballman, J. Phys. Chem. 65, 1396 (1961).CrossRefGoogle Scholar
  41. 40.
    D. J. Marshall and R. A. Laudise, J. Cryst. Growth 1, 88 (1967).CrossRefGoogle Scholar
  42. 41.
    R. A. Laudise and E. D. Kolb, Am. Miner. 48, 642 (1963).Google Scholar
  43. 42.
    D. J. Marshall and R. A. Laudise, Crystal Growth (Suppl. to J. Phys. Chem. Solids), p. 557, Pergamon, New York (1967).Google Scholar
  44. 43.
    R. A. Laudise, J. Am. Chem. Soc. 81, 562 (1959).CrossRefGoogle Scholar
  45. 44.
    R. A. Laudise and R. A. Sullivan, Chem. Eng. Prog. 55, 55 (1959).Google Scholar
  46. 45.
    D. W. Rudd, E. E. Haughton, and W. J. Carrol, Western Electric Engineer 1966 (January), 22.Google Scholar
  47. 46.
    D. M. Dodd and D. B. Fraser, J. Phys. Chem. Solids 26, 673 (1965).CrossRefGoogle Scholar
  48. 47.
    E. D. Kolb, D. A. Pinnow, T. C. Rich, N. C. Lias, E. E. Grudenski, and R. A. Laudise, Mat. Res. Bull. 7, 397 (1972).CrossRefGoogle Scholar
  49. 48.
    R. A. Laudise, E. D. Kolb, N. C. Lias, and E. E. Grudenski, in Proc. IVth All-Union Conf. on Crystal Growth, USSR, 1972,to be published.Google Scholar
  50. 49.
    N. C. Lias, E. E. Grudenski, E. D. Kolb, and R. A. Laudise, J. Cryst. Growth, 18, 1 (1973).CrossRefGoogle Scholar
  51. 50.
    J. A. Burton and W. P. Slichter, in Transistor Technology (H. E. Bridgers, J. H. Scaff, and J. H. Shive, eds.), Vol. 1, Chapter 5, D. Van Nostrand, Princeton, N.J. (1958).Google Scholar
  52. 51.
    R. A. Laudise and A. A. Ballman, J. Phys. Chem. 64, 688 (1960).CrossRefGoogle Scholar
  53. 52.
    E. D. Kolb and R. A. Laudise, J. Am. Ceram. Soc. 48, 342 (1965).CrossRefGoogle Scholar
  54. 53.
    J. W. Nielsen and F. G. Foster, Am. Miner. 45, 299 (1960).Google Scholar
  55. 54.
    E. D. Kolb, D. W. Wood, E. G. Spencer, and R. A. Laudise, J. Appl. Phys. 38, 1027 (1967).CrossRefGoogle Scholar
  56. 55.
    E. D. Kolb, D. L. Wood, and R. A. Laudise, J. Appl. Phys. 39, 1362 (1968).CrossRefGoogle Scholar
  57. 56.
    L. H. Shick, J. W. Nielsen, A. H. Bobeck, A. J. Kurtzig, P. C. Michaelis, and J. P. Reekstin, Appl. Phys. Letters, 18, 89 (1971).CrossRefGoogle Scholar
  58. 57.
    R. A. Laudise, J. Cryst. Growth 13/14, 27 (1971).Google Scholar
  59. 58.
    E. D. Kolb and R. A. Laudise, J. Cryst. Growth 8, 191 (1971).CrossRefGoogle Scholar
  60. 59.
    R. A. Laudise, in The Art and Science of Growing Crystals (J. J. Gilman, ed.), pp. 252ff., Wiley, New York (1963).Google Scholar
  61. 60.
    E. A. D. White, in Technique of Inorganic Chemistry (H. B. Jonassen and A. Weissberger, eds.), Vol. IV, pp. 31ff, Interscience, New York (1965).Google Scholar
  62. 61.
    Y. Laurent, Rev. Chem. Mineral 6, 1145 (1969).Google Scholar
  63. 62.
    J. W. Nielsen, in Proc. IVth All-Union Conf. on Crystal Growth, USSR, 1972,to be published.Google Scholar
  64. 63.
    H. J. Van Hook, J. Am. Ceram. Soc. 44, 208 (1961).CrossRefGoogle Scholar
  65. 64.
    A. H. Bobeck, Bell System Tech. J. 46, 1901 (1967).Google Scholar
  66. 65.
    J. W. Nielsen and E. F. Dearborn, J. Phys. Chem. Solids 5, 202 (1968).CrossRefGoogle Scholar
  67. 66.
    J. W. Nielsen, J. Appl. Phys. 31, 51S (1960).CrossRefGoogle Scholar
  68. 67.
    R. C. Linares, J. Am. Ceram. Soc. 45, 307 (1962).CrossRefGoogle Scholar
  69. 68.
    W. H. Grodkiewicz, E. F. Dearborn, and L. G. Van Uitert, in Crystal Growth ( H. S. Peiser, ed.), p. 441, Pergamon, New York (1967).Google Scholar
  70. 69.
    J. P. Remeika, J. Am. Chem. Soc. 76, 940 (1954).CrossRefGoogle Scholar
  71. 70.
    R. A. Lefever, J. W. Torpy, and A. B. Chase, J. Appl. Phys. 32, 962 (1961).CrossRefGoogle Scholar
  72. 71.
    J. Hart and E. A. D. White, unpublished work, reported in E. A. D. White, Ref. 64.Google Scholar
  73. 72.
    J. P. Remeika, J. Am. Chem. Soc. 78, 4259 (1956).CrossRefGoogle Scholar
  74. 73.
    W. H. Grodkiewicz and D. J. Nitti, J. Am. Ceram. Soc. 49, 576 (1966).CrossRefGoogle Scholar
  75. 74.
    F. Jona, G. Shirane, and R. Pepinsky, Phys. Rev. 97, 1584 (1955).CrossRefGoogle Scholar
  76. 75.
    H. J. Scheel, to be published, reported by Nielsen, Ref. 62.Google Scholar
  77. 76.
    H. Scholz and R. Kluckow, in Crystal Growth ( H. S. Peiser, ed.), p. 475, Pergamon, New York (1967).Google Scholar
  78. 77.
    W. Hintzman and G. Mueller-Vogt, J. Cryst. Growth 5, 274 (1969).CrossRefGoogle Scholar
  79. 78.
    H. J. Scheel, J. Cryst. Growth 13/14, 560 (1972).Google Scholar
  80. 79.
    H. J. Scheel, Oral presentation, ICCG-3, Marseille, July 1971.Google Scholar
  81. 80.
    H. J. Scheel and E. O. Schulz-DuBois, J. Cryst. Growth 8, 304 (1972).CrossRefGoogle Scholar
  82. 81.
    W. Tolksdorf and E. Welz, J. Cryst. Growth 13/14, 566 (1972).Google Scholar
  83. 82.
    R. Roy, in Crystal Growth ( H. S. Peiser, ed.), p. 505, Pergamon, New York (1967).Google Scholar
  84. 83.
    L. M. Viting, Vestn. Mosk. Univ. Ser. II Khim. 20 (4), 54 (1965).Google Scholar
  85. 84.
    R. A. Laudise, R. C. Linares, and E. F. Dearborn, J. Appl. Phys. Suppl. 33, 1362 (1962).CrossRefGoogle Scholar
  86. 85.
    W. A. Bonner, E. F. Dearborn, and L. G. Van Uitert, in Crystal Growth ( H. S. Peiser, ed.), p. 437, Pergamon, Oxford (1967).Google Scholar
  87. 86.
    P. W. Whipps, J. Cryst. Growth 12, 120 (1972).CrossRefGoogle Scholar
  88. 87.
    C. E. Miller, J. Appl. Phys. 29, 233 (1958).CrossRefGoogle Scholar
  89. 88.
    V. Belruss, J. Kalnajs, and A. Linz, Mat. Res. Bull. 6, 899 (1971).CrossRefGoogle Scholar
  90. 89a.
    D. S. Perloff and A. Wold, in Crystal Growth ( H. S. Peiser, ed.), p. 361, Pergamon, New York (1967).Google Scholar
  91. 89b.
    W. Kunnman, in Preparation and Properties of Solid State Materials (R. A. Lefever, ed.), pp. 1ff, Dekker, New York (1971)Google Scholar
  92. 90.
    F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Nature 176, 51 (1955).CrossRefGoogle Scholar
  93. 91.
    F. P. Bundy, in Modern Very High Pressure Techniques ( R. H. Wentorf, Jr., ed.), Butterworth, London (1962).Google Scholar
  94. 92.
    R. E. Hanneman, H. M. Strong, and F. P. Bundy, Science 155, 995 (1967).CrossRefGoogle Scholar
  95. 93.
    H. T. Hall, Rev. Sci. Instr. 31, 125 (1960).CrossRefGoogle Scholar
  96. 94.
    H. M. Strong and R. H. Wentorf, Jr., Naturwiss. 59 [1], 1 (1972).CrossRefGoogle Scholar
  97. 95.
    G. Wolff, P. H. Keck, and J. D. Broder, Phys. Rev. 94, 753 (1954).Google Scholar
  98. 96.
    G. Wolff, R. A. Herbert, and J. D. Broder, Semiconductors and Phosphors, pp. 463ff, Wiley-Interscience, New York (1958).Google Scholar
  99. 97.
    J. F. Miller, in Compound Semiconductors (R. K. Willardson and H. L. Goering, eds.), Vol. I, pp. 200ff, Reinhold, New York (1962).Google Scholar
  100. 98.
    D. G. Thomas, M. Gershenzon, and F. A. Trumbore, Phys. Rev. 133, A269 (1964).CrossRefGoogle Scholar
  101. 99.
    H. Nelson, RCA Rev. 24, 603 (1963).Google Scholar
  102. 100.
    M. R. Lorenz and M. Pilkuhn, J. Appl. Phys. 37, 4094 (1966).CrossRefGoogle Scholar
  103. 101.
    F. A. Trumbore, M. Kowalchik, and H. G. White, J. Appl. Phys. 38, 1987 (1967).CrossRefGoogle Scholar
  104. 102.
    R. A. Logan, H. G. White, and F. A. Trumbore, Appl. Phys. Letters 10, 206 (1967).CrossRefGoogle Scholar
  105. 103.
    R. C. Linares, J. Cryst. Growth 3/4, 443 (1968).Google Scholar
  106. 104.
    H. J. Levinstein, S. Licht, R. W. Landorf, and S. L. Blank, Appl. Phys. Letters 19, 486 (1971).CrossRefGoogle Scholar
  107. 105.
    W. G. Pfann, Trans. AIME 203, 961 (1955).Google Scholar
  108. 106.
    A. I. Mlaysky and M. Weinstein, J. Appl. Phys. 34, 2885 (1963).CrossRefGoogle Scholar
  109. 107.
    L. B. Griffiths and A. I. Mlaysky, J. Electrochem. Soc. 111, 805 (1964).CrossRefGoogle Scholar
  110. 108.
    W. G. Pfann, Zone Melting, 2nd ed., pp. 254ff, Wiley, New York (1966).Google Scholar
  111. 109.
    J. D. Broder and G. A. Wolff, J. Electrochem. Soc. 110, 1150 (1963).CrossRefGoogle Scholar
  112. 110.
    T. S. Plaskett, S. E. Blum, and L. M. Foster, J. Electrochem. Soc. 114, 1303 (1967).CrossRefGoogle Scholar
  113. 111.
    R. S. Wagner and W. C. Ellis, Trans. AIME 233, 1053 (1965).Google Scholar
  114. 112.
    R. S. Wagner and C. J. Doherty, J. Electrochem. Soc. 113, 1300 (1967).CrossRefGoogle Scholar
  115. 113.
    R. L. Barns and W. C. Ellis, J. Appl. Phys. 36, 2296 (1965).CrossRefGoogle Scholar
  116. 114.
    C. M. Wolfe, C. J. Nuese, and N. Holonyak, J. Appl. Phys. 36, 3790 (1965).CrossRefGoogle Scholar
  117. 115.
    R. S. Wagner, in Whisker Technology ( A. P. Levite, ed.), Wiley, New York (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • R. A. Laudise
    • 1
  1. 1.Bell LaboratoriesMurray HillUSA

Personalised recommendations