Advertisement

Growth from the Vapor

  • Morton E. Jones
  • Don W. Shaw
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 5)

Abstract

Growth from the vapor for preparing materials, particularly in the form of thin films, has become an extremely important technique. Probably the best example is its extensive use in the fabrication of silicon semiconductor devices and integrated circuits. Chemical vapor deposition is used to prepare the high-purity polycrystalline silicon, which is then melt-grown into single crystals. Thin silicon films, in which the actual devices and circuits are formed, are grown on slices of these crystals by chemical vapor deposition. Thin layers of silicon dioxide and silicon nitride are vapor-deposited for insulation and surface passivation. Finally, metal interconnect patterns are deposited, generally by vacuum evaporation. Chemical vapor deposition is also used for preparing high-purity metals, such as titanium, zirconium, hafnium, thorium, and chromium, and for a wide variety of other materials. Vacuum evaporation is used for depositing thin layers of many materials for surface coatings. The important present and potential uses of vapor deposition have spurred extensive research on these processes during the past decade. This chapter will discuss the general principles of growth from the vapor. Particular emphasis will be placed on the relative contributions of thermodynamic and kinetic factors to vapor deposition processes. Application of these principles will be illustrated using vapor-phase epitaxial growth as an example.

Keywords

Partial Pressure Deposition Rate Epitaxial Growth Gallium Arsenide Deposition Surface 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. R. Stull and G. C. Sinke, Thermodynamic Properties of the Elements, American Chemical Society, Washington, D.C. (1956).Google Scholar
  2. 2.
    D. R. Stull and H. Prophet, JANAF Thermochemical Tables, 2nd ed., National Bureau of Standards, No. NSRDS-NBS 37 (June 1971).Google Scholar
  3. 3.
    F. Rossini, D. Wagman, W. Evans, S. Levine, and I. Jaffe, National Bureau of Standards Circular 500 (1952).Google Scholar
  4. 4.
    D. D. Wagman, W. H. Evans, V. B. Parker, I. Halow, S. M. Bailey, and R. H. Schumm, “Selected Values of Thermochemical Properties,” National Bureau of Standards Technical Note 270–3 (1968).Google Scholar
  5. 5.
    A. Glassner, “Thermochemical Properties of the Oxides, Fluorides, and Chlorides to 2500 K,” U.S. Atomic Energy Commission ANL-5750 (1960).Google Scholar
  6. 6.
    K. K. Kelley, U.S. Bureau of Mines Bulletin 477 (1950).Google Scholar
  7. 7.
    K. K. Kelley, U.S. Bureau of Mines Bulletin 584 (1960).Google Scholar
  8. 8.
    K. K. Kelley and E. G. King, U.S. Bureau of Mines Bulletin 592 (1961).Google Scholar
  9. 9.
    O. Kubaschewski and E. L. Evans, Metallurgical Thermochemistry, Pergamon Press, London (1958).Google Scholar
  10. 10.
    W. B. White, S. M. Johnson, and G. B. Danzig, Chemical equilibrium in complex mixtures, J. Chem. Phys. 28, 751–755 (1958).CrossRefGoogle Scholar
  11. 11.
    W. D. Madeley and J. M. Toguri, Computing chemical equilibrium compositions in multiphase systems, Ind. Eng. Chem. Fund. 12, 261–2 (1973).CrossRefGoogle Scholar
  12. 12.
    F. P. Boynton, Chemical equilibrium in multicomponent polyphase systems, J. Chem. Phys. 32, 1880–1881 (1959).CrossRefGoogle Scholar
  13. 13.
    R. B. Bird, W. E. Stewart, and E. N. Lightfoot, Transport Phenomena, Wiley, New York (1960).Google Scholar
  14. 14.
    R. F. Lever, The equilibrium behavior of the silicon-hydrogen-chlorine system, IBM J. Res. Develop. 8, 460–465 (1965).CrossRefGoogle Scholar
  15. 15.
    M. J. Harper and T. J. Lewis, “Thermodynamics of the Chlorine-HydrogenSilicon System,” Great Britain Explosives Research and Development Establishment Report ERDE 6/M/66, Waltham, England (June 1966).Google Scholar
  16. 16.
    L. P. Hunt and E. Sirtl, in Chemical Vapor Deposition ( J. M. Blocker, Jr. and J. C. Withers, ed.), Electrochemical Society, Princeton, New Jersey (1970), pp. 3–24.Google Scholar
  17. 17.
    L. P. Hunt and E. Sirtl, A thorough thermodynamic evaluation of the siliconhydrogen-chlorine system, J. Electrochem. Soc. 119, 1741–1745 (1972).CrossRefGoogle Scholar
  18. 18.
    T. O. Sedgwick, Analysis of the hydrogen reduction of silicon tetrachloride process on the basis of a quasi-equilibrium model, J. Electrochem. Soc. 111, 1381–1383 (1964).CrossRefGoogle Scholar
  19. 19.
    D. W. Shaw, in Crystal Growth-Theory and Techniques (C. H. L. Goodman, ed.), Vol. 1, Plenum, London (1974), pp. 1–48.Google Scholar
  20. 20.
    R. W. Andrews, D. M. Rynne, and E. G. White, Effect of reactor geometry on growth rate of epitaxial silicon, Solid State Tech. 1969, 61–66.Google Scholar
  21. 21.
    W. H. Shepherd, Vapor phase deposition and etching of silicon, J. Electrochem. Soc. 112, 988–994 (1965).CrossRefGoogle Scholar
  22. 22.
    H. C. Theuerer, Epitaxial silicon films by the hydrogen reduction of SiCI4, J. Electrochem. Soc. 108, 649–653 (1961).CrossRefGoogle Scholar
  23. 23.
    E. G. Bylander, Kinetics of silicon crystal growth from SiCl4 decomposition, J. Electrochem. Soc. 109, 1171–1175 (1962).CrossRefGoogle Scholar
  24. 24.
    E. G. Alexander, A surface reaction approach to the growth kinetics of epitaxial silicon from SiC14, J. Electrochem. Soc. 114, 65C (1967).Google Scholar
  25. 25.
    W. Runyan, in Semiconductor Silicon ( R. R. Haberecht and E. L. Kern, eds.), Electrochemical Society, Princeton, New Jersey (1969), pp. 169–188.Google Scholar
  26. 26.
    S. K. Tung, The effects of substrate orientation on epitaxial growth, J. Electrochem. Soc. 112, 436–438 (1965).CrossRefGoogle Scholar
  27. 27.
    M. E. Jones, in Reactivity of Solids (J. W. Mitchell, R. C. Devries, R. W. Roberts, and P. Cannon, eds.), Wiley, New York (1969), pp. 433–451.Google Scholar
  28. 28.
    S. E. Bradshaw, The kinetics of epitaxial silicon deposition by the hydrogen reduction of chlorosilanes, Int. J. Electronics 21, 205–227 (1966).CrossRefGoogle Scholar
  29. 29.
    S. E. Bradshaw, The effects of gas pressure and velocity on epitaxial silicon deposition by the hydrogen reduction of chlorosilanes, Int. J. Electronics 23, 381–391 (1967).CrossRefGoogle Scholar
  30. 30.
    F. C. Eversteyn, P. J. W. Severin, C. H. J. v. d. Brekel, and H. L. Peek, A stagnant layer model for the epitaxial growth of silicon from silane in a horizontal reactor, J. Electrochem. Soc. 117, 925–391 (1970).CrossRefGoogle Scholar
  31. 31.
    K. Sugawara, Silicon epitaxial growth by rotating disc method, J. Electrochem. Soc. 119, 1740–1760 (1972).CrossRefGoogle Scholar
  32. 32.
    R. Takahashi, Y. Koga, and K. Sugawara, Gas flow pattern and mass transfer analysis in a horizontal flow reactor for chemical vapor deposition, J. Electrochem. Soc. 119, 1406–1412 (1972).CrossRefGoogle Scholar
  33. 33.
    J. P. Dismukes and B. J. Curtis, in Semiconductor Silicon 1973 ( H. R. Huff and R. R. Burgess, eds.), Electrochemical Society, Princeton, New Jersey (1973), pp. 258–270.Google Scholar
  34. 34.
    R. R. Fergusson and T. Gabor, The transport of gallium arsenide in the vapor phase by chemical reaction, J. Electrochem. Soc. 111, 585–592 (1964).CrossRefGoogle Scholar
  35. 35.
    H. Seki, K. Moriyama, I. Askakawa, and S. Horie, Thermodynamics study of transport and epitaxial growth of GaAs in an open tube, Japan J. Appl. Phys. 7, 1324–1331 (1968).CrossRefGoogle Scholar
  36. 36.
    D. T. J. Hurle and J. B. Mullin, Thermodynamics of gas-phase equilibria: the Ga: As:C1:H system, J. Phys. Chem. Solids, Suppl.1, p. 241 (1967).Google Scholar
  37. 37.
    V. S. Ban, Mass spectrometric studies of vapor phase crystal growth, J. Electrochem. Soc. 118, 1473–1478 (1971).CrossRefGoogle Scholar
  38. 38.
    D. W. Shaw, Epitaxial GaAs kinetic studies: 10011 orientation, J. Electrochem. Soc. 117, 683–687 (1970).CrossRefGoogle Scholar
  39. 39.
    D. W. Shaw, Influence of substrate temperature on GaAs epitaxial deposition rates. J. Electrochem. Soc. 115, 405–408 (1968).CrossRefGoogle Scholar
  40. 40.
    D. W. Shaw, Kinetics of transport and epitaxial growth of GaAs with a Ga—AsC13 system, J. Cryst. Growth 8, 117–128 (1971).CrossRefGoogle Scholar
  41. 41.
    I. A. Sheka, I. S. Chaus, and T. T. Mityureva, Chemistry of Gallium, Elsevier, Amsterdam (1966).Google Scholar
  42. 42.
    B. G. Secrest, W. W. Boyd, and D. W. Shaw, Application of the finite element method to mass transport limited epitaxial growth processes, J. Cryst. Growth 10, 251–259 (1971).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Morton E. Jones
    • 1
  • Don W. Shaw
    • 1
  1. 1.Central Research LaboratoriesTexas Instruments Inc.DallasUSA

Personalised recommendations