Relation of the Thermochemistry and Phase Diagrams of Condensed Systems

  • Larry Kaufman
  • Harvey Nesor
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 5)

Abstract

The relation between the thermochemistry and the phase diagram of a condensed system is an identity. Although this identity was rather well known to the chemists, metallurgists, and ceramists who practiced in the early decades of this century, most practitioners educated after the second world war seem to be unaware of the equivalence. Indeed, the field of phase diagrams is almost exclusively tilled by metallurgists and ceramists, while thermochemical aspects of condensed systems is the exclusive province of chemists. This dichotomy is extremely wasteful since the integrated description of a system permits interrelation of phase diagram and thermochemical data yielding a more complete description of a given system. The description of the magnesium—gallium—aluminum system shown in Table 1 and Figure 1 illustrates the interrelation between thermochemical and phase diagram data and serves to review the whole problem for those who are accustomed to dealing only with the component parts. Table 1 summarizes the free energy of formation of Mg—Ga and Mg—Al compounds at 300°K. These free energies of formation have been calculated from measurements of the thermochemical properties of the Mg—Ga and Mg—Al systems(1,2) using techniques which have been described in detail(3) for combining phase diagram and thermochemical data.

Keywords

Phase Diagram Isothermal Section Condense System Sigma Phase Lattice Stability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Hultgren, R. L. Orr, P. D. Anderson, and K. K. Kelley, Selected Values of Thermodynamic Properties of Metals and Alloys, Wiley, New York (1963).Google Scholar
  2. 2.
    R. Hultgren et al., Supplement to Selected Values of Thermodynamic Properties of Metals and Alloys,University of California, Berkeley (1966–1971).Google Scholar
  3. 3.
    L. Kaufman and H. Bernstein, Computer Calculation of Phase Diagrams, Academic, New York (1970).Google Scholar
  4. 4.
    K. A. Bolbshakov, P. I. Fedorov, E. I. Smarina, and I. N. Smirnova, Zh. Neorgan. Khim. 9, 1883 (1964).Google Scholar
  5. 5.
    C. Bodsworth and O. Kubaschewski, Metallurgical Chemistry, Preface (O. Kubaschewski, ed.), HMSO, London (1972).Google Scholar
  6. 6.
    L. Kaufman, in Metallurgical Chemistry ( O. Kubaschewski, ed.), p. 373, HMSO, London (1972).Google Scholar
  7. 7.
    I. Ansara, in Metallurgical Chemistry ( O. Kubaschewski, ed.), p. 403, HMSO, London (1972).Google Scholar
  8. 8.
    H. Harvig, T. Nishizawa, and B. Uhrenius, in Metallurgical Chemistry ( O. Kubaschewski, ed.), p. 431, HMSO, London (1972).Google Scholar
  9. 9.
    J. F. Counsell, E. B. Lees, and P. J. Spencer, in Metallurgical Chemistry ( O. Kubaschewski, ed.), p. 451, HMSO, London (1922).Google Scholar
  10. 10.
    J. F. Counsell and O. Kubaschewski, in Metallurgical Chemistry ( O. Kubaschewski, ed.), p. 649, HMSO, London (1972).Google Scholar
  11. 11.
    C. H. P. Lupis and H. Gaye, in Metallurgical Chemistry (O. Kubaschewski, ed.), p. 469, HMSO, London (1972); Scripta Met. 4, 685 (1970).Google Scholar
  12. 12.
    G. Kirchner, H. Harvig, and B. Uhrenius, Met. Trans. 4, 1059 (1973).CrossRefGoogle Scholar
  13. 13.
    H. Harvig, G. Kirchner, and M. Hillert, Met. Trans. 3, 329 (1972).CrossRefGoogle Scholar
  14. 14.
    G. Kirchner, G. Larbo, and B. Uhrenius, Praktische Metallographie 8, 641 (1971).Google Scholar
  15. 15.
    G. Kirchner, H. Harvig, K.-R. Moquist, and M. Hillert, Arch. Eisenhiitt. 44,1973 (in press).Google Scholar
  16. 16.
    G. Kirchner, T. Nishizawa, and B. Uhrenius, Met. Trans. 4, 167 (1973).CrossRefGoogle Scholar
  17. 17.
    L. Kaufman and H. Nesor, in Titanium Science and Technology ( R. I. Jaffee and H. M. Burte, eds.), pp. 773–800, Plenum, New York (1973).Google Scholar
  18. 18.
    L. Kaufman and H. Nesor, Conf. on In Situ Composites,National Academy of Science, Washington, D.C., NMAB 308 III pp. 21–29.Google Scholar
  19. 19.
    L. Kaufman and H. Nesor, Z. Metallk. 64, 249 (1973).Google Scholar
  20. 20.
    P. J. Spencer and F. H. Putland, J. Iron and Steel Inst. 211, 293 (1973).Google Scholar
  21. 21.
    I. Ansara, E. Bonnier, and J. Mathieu, Z. Metallk. 64, 258 (1973).Google Scholar
  22. 22.
    N. J. Olson and G. N. Toop, Trans. Met. Soc. AIME 245, 905 (1969).Google Scholar
  23. 23.
    S. M. Carmio and J. L. Meijering, Z. Metallk. 64, 170 (1973).Google Scholar
  24. 24.
    E. Rudy and Y. A. Chang, in Plansee Proceedings, 1964 (F. Benesovsky, ed.), p. 786, Metallwerke Plansee AG, Reutte/Tyrol.Google Scholar
  25. 25.
    Y. A. Chang and D. Naujock, Met. Trans. 3, 1693 (1972).CrossRefGoogle Scholar
  26. 26.
    R. F. Brebrick, Met. Trans. 2, 1657, 3377 (1971).Google Scholar
  27. 27.
    Y. K. Rao, in Phase Diagrams (A. Alper, ed.), Volume 1, p. 1, Academic, New York (1970).Google Scholar
  28. 28.
    J. F. Breedis and L. Kaufman, Met. Trans. 2, 2359 (1971).CrossRefGoogle Scholar
  29. 29.
    J. B. Gilmore, G. R. Purdy, and J. Kirkaldy, Met. Trans. 3, 1455 (1972).CrossRefGoogle Scholar
  30. 30.
    L. Kaufman, Phase Stability in Metals and Alloys (P. S. Rudman, J. Stringer, and R. I. Jaffee, eds.), p. 125, McGraw-Hill, New York (1967).Google Scholar
  31. 31.
    L. A. Pugliese and G. R. Fitterer, Met. Trans. 1, 1997 (1970).CrossRefGoogle Scholar
  32. 32.
    F. Mueller and F. H. Hayes, J. Chem. Thermo. 3, 599 (1971).CrossRefGoogle Scholar
  33. 33.
    L. Kaufman, E. V. Clougherty, and R. J. Weiss, Acta Met. 11, 323 (1963).CrossRefGoogle Scholar
  34. 34.
    A. P. Miodownik, in Int. Symp. on Metallugical Chemistry—Application in Ferrous Metallurgy ( B. B. Argent and M. W. Davies, eds.), HMSO, England (1972).Google Scholar
  35. 35.
    B. Predel and R. H. Mohs, Arch. Eisenhiitt. 41, 61 (1970).Google Scholar
  36. 36.
    R. W. Carpenter, C. T. Liu, and P. G. Mardon, Met. Trans. 2, 125 (1971).CrossRefGoogle Scholar
  37. 37.
    M. B. Panish, in Phase Diagrams (A. Alper, ed.), Volume III, p. 53, Academic, New York (1970).Google Scholar
  38. 38.
    C. Wagner, Acta Met. 6, 309 (1958).CrossRefGoogle Scholar
  39. 39.
    J. J. Vieland, Acta Met. 11, 137 (1963).CrossRefGoogle Scholar
  40. 40.
    G. G. Libowitz and J. B. Lightstone, J. Phys. Chem. Solids 28, 1 145 (1967).Google Scholar
  41. 41.
    R. F. Brebrick, in Progress in Solid State Chemistry (H. Reiss, ed.), Volume III, p. 213, Pergamon (1966); J. Solid State Chem. 1, 88 (1969).Google Scholar
  42. 42.
    L. Kaufman and E. V. Clougherty, in Metallurgy at High Pressure and High Temperature (K. A. Gschneider, M. T. Hepworth, and N. A. D. Parlee, eds.), Gordon and Breach, New York; Met. Soc. Conf. AIME 22, 322 (1964).Google Scholar
  43. 43.
    E. Rudy, Thermodynamics of Nuclear Materials, p. 243, IAEA, Vienna (1962).Google Scholar
  44. 44.
    L. Kaufman, in Compounds of Interest in Nuclear Reactor Technology (J. T. Waber, P. Chiotti, and W. N. Miner, eds.), pp. 193, 267, AIME, New York (1964).Google Scholar
  45. 45.
    L. Kaufman and E. V. Clougherty, in Metals for the Space Age Plansee Proceedings, 1964 (F. Benesovsky, ed.), p. 722, Metallwerke Plansee, Reutte/Tyrol.Google Scholar
  46. 46.
    L. Kaufman and G. Stepakoff, Third Conf on the Performance of High Temperature Systems (G. Bahn, ed.), p. 33, Gordon and Breach, New York (1964).Google Scholar
  47. 47.
    B. Predel and R. H. Mohs, Arch. Eisenhütt. 41, 143 (1970).Google Scholar
  48. 48.
    A. P. Miodownik, Acta Met. 18, 51 (1970).CrossRefGoogle Scholar
  49. 49.
    O. Kubaschewski and W. Slough, Progr. Mat. Sci. 14, 3 (1969).CrossRefGoogle Scholar
  50. 50.
    O. Kubaschewski and L. E. H. Stuart, J. Chem. Eng. Data 12, 418 (1967).CrossRefGoogle Scholar
  51. 51.
    D. Henriette, C. Gatellier, and M. Ollette, in Int. Symp. on Metallurgical Chemistry ( O. Kubaschewski, ed.), p. 97, HMSO, London (1972).Google Scholar
  52. 52.
    E. Scheil and W. Normann, Arch. Eisenhütt. 30, 751 (1959).Google Scholar
  53. 53.
    E. Scheil and E. Saftig, Arch. Eisenhütt. 31, 623 (1960).Google Scholar
  54. 54.
    M. Hansen and K. Anderko, Constitution of Binary Alloys, McGraw-Hill, New York (1958).Google Scholar
  55. 55.
    R. P. Elliot, Constitution of Binary Alloys, First supplement, McGraw-Hill, New York (1965).Google Scholar
  56. 56.
    F. A. Shunk, Constitution of Binary Alloys, Second supplement, McGraw-Hill, New York (1968).Google Scholar
  57. 57.
    M. M. Rao, R. J. Russell, and P. G. Winchell, Trans. TMS-AIME 239, 641 (1967).Google Scholar
  58. 58.
    J. I. Goldstein and R. E. Ogilvie, Trans. TMS-AIME 233, 2083 (1965).Google Scholar
  59. 59.
    L. Kaufman and M. Cohen, Trans. AIME 206, 1393 (1956).Google Scholar
  60. 60.
    R. Fruehan, Trans. Met. Soc. AIME 242, 2007 (1968).Google Scholar
  61. 61.
    E. P. Hall and S. H. Algie, Metallurgical Rev. 11, 61 (1966).Google Scholar
  62. 62.
    F. Mueller and O. Kubaschewski, High Temperature-High Pressure 1, 543 (1969).Google Scholar
  63. 63.
    L. Kaufman, Scripta Met. 4, 437 (1969).Google Scholar
  64. 64.
    R. H. Moore, Chemical Metallurgy of Iron and Steel, Iron and Steel Inst. of London (1973), p. 360.Google Scholar
  65. 65.
    J. W. Pugh and J. D. Nisbet, Trans. Met. Soc. AIME 178, 268 (1950).Google Scholar
  66. 66.
    T. Lindemer, Oak Ridge National Laboratory, Oak Ridge, Tennessee, Private communication (December 1971).Google Scholar
  67. 67.
    F. P. Bundy, J. Appl. Phys. 38, 2446 (1967).CrossRefGoogle Scholar
  68. 68.
    T. R. Loree, C. M. Fowler, E. G. Zukas, and F. S. Minshall, J. Appl. Phys. 37, 1918 (1966).CrossRefGoogle Scholar
  69. 69.
    J. F. Breedis and L. Kaufman, Met. Trans. 2, 2359 (1971).CrossRefGoogle Scholar
  70. 70.
    P. M. Giles and A. Marder, Met. Trans. 2, 1371 (1971).Google Scholar
  71. 71.
    A. Fraker and H. H. Stadelmaier, Trans. Met. Soc. AIME 245, 847 (1969).Google Scholar
  72. 72.
    V. Ya. Markiv, V. V. Burnashova, L. I. Pryakhina, and K. P. Myasnikova, Metally 1969, 180.Google Scholar
  73. 73.
    H. L. Gegel and M. Hoch, in Titanium Science and Technology ( R. I. Jaffee and H. M. Burte, eds.), pp. 923–934, Plenum, New York (1973).Google Scholar
  74. 74.
    B. Bredel and D. W. Stein, Acta Met. 20, 515 (1972).CrossRefGoogle Scholar
  75. 75.
    D. Clark, K. S. Jepson, and C. J. Lewis, J. Inst. Metals 91,197 (1962–1963).Google Scholar
  76. 76.
    M. J. Blackburn, Trans. Met. Soc. AIME 239, 1200 (1967).Google Scholar
  77. 77.
    F. A. Crossley, Trans. Met. Soc. AIME 242, 726 (1968).Google Scholar
  78. 78.
    M. J. Blackburn, Trans. Met. Soc. AIME 242, 728 (1968).Google Scholar
  79. 79.
    E. Rudy, Compendium of Phase Diagram Data, AFML-TR-65–2, Part V, Wright-Patterson Air Force Base, Ohio, 1969.Google Scholar
  80. 80.
    J. F. Martin, F. Muller, and O. Kubaschewski, Trans. Faraday Soc. 66, 1065 (1970).CrossRefGoogle Scholar
  81. 81.
    V. N. Svechnikov and V. M. Pan, Summaries Sci. Work, Inst. Metal Phys., Acad. Sci. Ukr SSR 1962(8), 46–57; 1962(15), 156–162.Google Scholar
  82. 82.
    L. Kaufman and H. Bernstein, Phase Diagrams (A. Alper, ed.), Volume 1, p. 45, Academic, New York (1970).Google Scholar
  83. 83.
    M. M. Savel’eva and N. V. Grum-Grzhimaylo, Izv. Akad. Nauk SSSR, Metally 1, 224 (1969).Google Scholar
  84. 84.
    I. I. Kornilov, S. P. Alisova, and P. B. Budberg, Izv. Akad. Nauk SSSR, Neorg. Mater. 1, 2205 (1965).Google Scholar
  85. 85.
    M. I. Zakharova and D. A. Prokoshkim, Izv. Akad. Nauk SSSR Otd. Tekh. Nauk Met. i Topliva 4, 59 (1961).Google Scholar
  86. 86.
    H. J. Goldschmidt and J. A. Brandt, J. Less-Common Metals 3, 44 (1961).CrossRefGoogle Scholar
  87. 87.
    Binary and Ternary Phase Diagrams of Cb, Mo, Ta and W, DMIC Report 183, February 7, 1963, Battelle Memorial Institute, Columbus, Ohio.Google Scholar
  88. 88.
    S. C. Singhal and W. L. Worrell, in Int. Symp. on Metallurgical Chemistry ( O. Kubaschewski, ed.), p. 149, HMSO, London (1971).Google Scholar
  89. 89.
    Toshio Doy, Masahiro Kitada, and Fumihiko Ishida, J. Japan. Inst. Metals 32, 684 (1968).Google Scholar
  90. 90.
    L. Kaufman and H. Nesor, in Ann. Rev. of Material Sci. (R. Huggins, ed.), Vol. 3, Annual Reviews, Palo Alto, California (1973).Google Scholar
  91. 91.
    R. M. German and G. R. St. Pierre, Met. Trans. 3, 2819 (1972).CrossRefGoogle Scholar
  92. 92.
    J. Swartz, Met. Trans. 2, 2318 (1971).CrossRefGoogle Scholar
  93. 93.
    H. Strong, Trans. Met. Soc. AIME 233, 643 (1965).Google Scholar
  94. 94.
    L. Kaufman, S. V. Radcliffe, and M. Cohen, in Decomposition of Austenite by Diffusional Processes ( V. F. Zackay and H. I. Aaronson, eds.), p. 313, AIMEInterscience, New York (1962).Google Scholar
  95. 95.
    G. J. Schoessow, Graphite Triple Point and Solidus-Liquidus Interface Experimentally Determined to 1000 Atmospheres, NASA CR-1148, July 1968.Google Scholar
  96. 96.
    N. S. Diaconis, E. R. Stover, J. Hook, and G. J. Catalano, Graphite Melting Behavior, AFML-TR-71–119, July 1971.Google Scholar
  97. 97.
    L. Kaufman and E. V. Clougherty, Metallurgy at high pressures and high temperatures, in Metallurgical Society Conferences (K. A. Gschneider, M. T. Hepworth, and N. A. P. Parlee, eds.), Volume 22, p. 322, Gordon and Breach, New York (1964).Google Scholar
  98. 98.
    A. D. Kulkarni and W. L. Worrell, Met. Trans. 3, 2363 (1972).CrossRefGoogle Scholar
  99. 99.
    J. Chipman, Met. Trans. 3, 55 (1972).CrossRefGoogle Scholar
  100. 100.
    H. Schenk, E. Steinmetz, and M. Gloz, in Metallurgical Chemistry ( O. Kubaschewski, ed.), p. 445, HMSO, London (1972).Google Scholar
  101. 101.
    W. Jellinghaus, Arch. Eisenhütt. 40, 843 (1969).Google Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • Larry Kaufman
    • 1
  • Harvey Nesor
    • 1
  1. 1.ManLabs, Inc.CambridgeUSA

Personalised recommendations