Clustering Effects in Solid Solutions

  • D. de Fontaine
Part of the Treatise on Solid State Chemistry book series (TSSC, volume 5)


Solid-state transformations can be classified into two main categories: (a) homogeneous reactions, which occur in the bulk crystalline (or amorphous) phases, and (b) heterogeneous ones, which occur at structural defects such as grain boundaries, dislocations, etc. This chapter covers homogeneous reactions only, and particularly those transformations that are caused by instabilities or meta-stabilities of solid solutions to local compositional changes. Such replacive reactions can be of two types: (a) clustering transformations, which favor like-atom bonds, and (b) ordering transformations, which favor unlike bonds. Only clustering reactions are treated here, although the formalism can easily be extended to cover order—disorder reactions as well.


Free Energy Solid Solution Cluster Effect Spinodal Decomposition Critical Nucleus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. W. Gibbs, On the equilibrium of heterogeneous substances, in Scientific Papers, pp. 105 and 252, Dover, New York (1961).Google Scholar
  2. 2.
    M. Volmer and A. Weber, Nuclei formation in supersaturated states, Z. Physik. Chem. 119, 277–301 (1925).Google Scholar
  3. 3.
    R. Becker and W. Döring, Kinetic treatment of grain formation in supersaturated vapors, Ann. Physik. 24, 719–752 (1935).CrossRefGoogle Scholar
  4. 4.
    D. Turnbull, Phase changes, in Solid State Physics ( F. Seitz and D. Turnbull, eds.), pp. 226–308, Academic, New York (1956).Google Scholar
  5. 5.
    J. W. Christian, The Theory of Phase Transformations in Metals and Alloys, Pergamon, London (1965).Google Scholar
  6. 6.
    K. C. Russell, Nucleation in solids, in Phase Transformations (H. I. Aaronson, ed.), pp. 219–268, American Society for Metals, Metals Park, Ohio (1970).Google Scholar
  7. 7.
    M. Hillert, A theory of nucleation of solid metallic solutions, D.Sc. Dissertation, Massachusetts Institute of Technology, Cambridge, Mass. (1956).Google Scholar
  8. 8.
    M. Hillert, A solid-solution model for inhomogeneous systems, Acta Met. 9, 525–535 (196i).Google Scholar
  9. 9.
    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys. 28, 258–267 (1958).Google Scholar
  10. 10.
    J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, II. Nucleation in a two-compartment incompressible fluid, J. Chem. Phys. 31, 688–699 (1959).CrossRefGoogle Scholar
  11. 11.
    J. W. Cahn, On spinodal decomposition, Acta Met. 9, 795–801 (1961).CrossRefGoogle Scholar
  12. 12.
    J. W. Cahn, On spinodal decomposition in cubic crystals, Acta Met. 10, 179–183 (1962).CrossRefGoogle Scholar
  13. 13.
    J. W. Cahn, Coherent fluctuations and nucleation in isotropic solids, Acta Met. 10, 907–913 (1962).CrossRefGoogle Scholar
  14. 14.
    H. E. Cook, D. de Fontaine, and J. E. Hilliard, A model for diffusion on cubic lattices and its application to the early stages of ordering, Acta Met. 17, 765–773 (1969).CrossRefGoogle Scholar
  15. 15.
    D. de Fontaine and H. E. Cook, Early-stage clustering and ordering kinetics in binary solid solutions, in Critical Phenomena in Alloys, Magnets, and Superconductors (R. E. Mills, E. Ascher, and R. I. Jaffee, eds.), pp. 257–275, McGraw-Hill, New York (1971).Google Scholar
  16. 16.
    D. de Fontaine, A computer simulation of the evolution of coherent composition variations in solid solutions, Ph.D. Dissertation, Northwestern University, Evanston, Illinois (1967).Google Scholar
  17. 17.
    D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions-I. Stability criteria, J. Phys. Chem. Solids 33, 297–310 (1972).CrossRefGoogle Scholar
  18. 18.
    D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions-II. Fluctuations and kinetics, J. Phys. Chem. Solids 34, 1285–1304 (1973).CrossRefGoogle Scholar
  19. 19.
    J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems, Acta Met. 19, 1037–1045 (1971).CrossRefGoogle Scholar
  20. 20.
    D. de Fontaine, in Solid State Physics (H. Ehrenreich, F. Seitz and D. Turnbull, eds.), to be published.Google Scholar
  21. 21.
    J. W. Cahn, The later stages of spinodal decomposition and the beginnings of particle coarsening, Acta Met. 14, 1685–1692 (1966).CrossRefGoogle Scholar
  22. 22.
    J. S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys. (N.Y.) 65, 53–86 (1971).CrossRefGoogle Scholar
  23. 23.
    L. H. Shendalman and J. T. O’Toole, Nucleation and coarsening in binary condensed phases, J. Colloid. Interface Sci. 27, 145–160 (1968).CrossRefGoogle Scholar
  24. 24.
    L. A. Swanger, P. K. Gupta, and A. R. Cooper, Jr., Computer simulation of one-dimensional spinodal decomposition, Acta Met. 18, 9–14 (1970).CrossRefGoogle Scholar
  25. 25.
    J. W. Cahn, Spinodal decomposition, Trans. AIME 242, 166–180 (1968).Google Scholar
  26. 26.
    J. W. Cahn, Unmixing in binary critical systems, in Critical Phenomena in Alloys, Magnets, and Superconductors (R. E. Mills, E. Ascher, and R. I. Jaffee, eds.), pp. 41–64, McGraw-Hill, New York (1971).Google Scholar
  27. 27.
    J. E. Hilliard, Spinodal decomposition, in Phase Transformations ( H. I. Aaronson, ed.), pp. 497–560, American Society for Metals, Metals Park, Ohio (1970).Google Scholar
  28. 28.
    D. de Fontaine, Development of fine coherent precipitate morphologies by the spinodal mechanisms, in Ultrafine Grain Metals (Burke and V. Weiss, eds.), pp. 93–131, Syracuse Univ. Press (1970).Google Scholar
  29. 29.
    A. Bonfiglioli, La decomposition espinodal, Comision Nacional de Energia Atomica PMM/I-91, Buenos Aires, Argentina (1972).Google Scholar
  30. 30.
    A. G. Khachaturyan and R. A. Suris, Theory of periodic distributions of concentrations in a supersaturated solid solution, Soviet Phys.-Crystallography 13, 63–67 (1968).Google Scholar
  31. 31.
    R. Kikuchi, Cooperative phenomena in the triangular lattice, J. Chem. Phys. 47, 1664–1668 (1967).CrossRefGoogle Scholar
  32. 32.
    P. C. Clapp, A critical examination of the validity of the pair-wise interaction model for ordered alloys, in Ordered Alloys: Structural Applications and Physical Metallurgy (B. H. Kear, ed.), pp. 25–35, Clator’s Press, Baton Rouge, La. (1970).Google Scholar
  33. 33.
    D. W. Hoffman, Configurational entropy and solute correlation in disordered alloys, Trans. AIME, in press.Google Scholar
  34. 34.
    R. Cadoret, A statistical treatment of the free energy of binary nonhomogeneous solutions, Phys. Stat. Sol. (b) 46, 291–298 (1971).CrossRefGoogle Scholar
  35. 35.
    J. F. Nye, Physical Properties of Crystals, Oxford Univ. Press (1957).Google Scholar
  36. 36.
    H. E. Cook and D. de Fontaine, On the elastic free energy of solid solutions-I. Microscopic theory, Acta Met. 17, 915–924 (1969).CrossRefGoogle Scholar
  37. 37.
    A. G. Khachaturyan, Microscopic theory of diffusion in crystalline solid solutions and the time evolution of the diffuse scattering of X-rays and thermal neutrons, Soviet Phys.-Solid State 9, 2040–2046 (1968).Google Scholar
  38. 38.
    H. E. Cook and D. de Fontaine, On the elastic free energy of solid solutions-II. Influence of the effective modulus on precipitation from solution and the order-disorder reaction, Acta Met. 19, 607–616 (1971).CrossRefGoogle Scholar
  39. 39.
    D. W. Hoffman, Concerning the elastic energy of dilute interstitial alloys, Acta Met. 18, 819–833 (1970).CrossRefGoogle Scholar
  40. 40.
    W. H. Zachariasen, X-Ray Diffraction in Crystals, Wiley, New York (1945).Google Scholar
  41. 41.
    A. Guinier, A new type of X-ray diagram, Compt. Rend. 206, 1641–1643 (1938).Google Scholar
  42. 42.
    G. D. Preston, The diffraction of X-rays by age-hardening Al-Cu alloys, Proc. Roy. Soc. A167, 526–538 (1938).CrossRefGoogle Scholar
  43. 43.
    M. Murakami, O. Kawano, and Y. Murakami, On the determination of the solvus temperature for G.P. zones in an AI-0.8 at. % Zn alloy, J. Inst. Metals (London) 99, 160 (1971).Google Scholar
  44. 44.
    J. Lasek, Über die Einfluss der durchschnittlichen Zusammensetzung auf die Lage der kohärenten Mischungslücke von Al-Zn Legierungen, Czech. J. Phys. 15, 848–857 (1965).Google Scholar
  45. 45.
    V. Gerold, Die Zonebildung in AI Zn Legierungen, Phys. Stat. Sol. 1, 37–49 (1961).CrossRefGoogle Scholar
  46. 46.
    V. Gerold and W. Mertz, On the decomposition of an aluminum-zinc alloy, Scripta Met. 1, 33–35 (1967).CrossRefGoogle Scholar
  47. 47.
    G. J. C. Carpenter and R. D. Garwood, Hardness reversion and the metastable phase boundary for G.P. zones in Al-Zn alloys, J. Inst. Metals (London), 94, 301–304 (1966).Google Scholar
  48. 48.
    T. Niklewski, P. Spiegelberg, and K. Sunbulli, The solvus curve for G.P. zones in Al-Zn alloys: A diffuse X-ray study, Metal Sci. J. 3, 23–25 (1969).Google Scholar
  49. 49.
    A. J. Ardell, K. Nuttall, and R. B. Nicholson, The decomposition of concentrated Al-Zn alloys, in The Mechanism of Phase Transformation in Crystalline Solids, pp. 22–26, The Institute of Metals, London, England (1968).Google Scholar
  50. 50.
    B. Golding and S. C. Moss, A recalculation of the gold nickel spinodal, Acta Met. 15, 1239–1241 (1967).CrossRefGoogle Scholar
  51. 51.
    D. de Fontaine, An approximate criterion for the loss of coherency in modulated structures, Acta Met. 17, 477–482 (1969).CrossRefGoogle Scholar
  52. 52.
    H. Goldstein, Classical Mechanics, p. 53, Addison-Wesley, Reading, Mass. (1950).Google Scholar
  53. 53.
    G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, pp. 830–841, McGraw-Hill, New York (1968).Google Scholar
  54. 54.
    R. Kikuchi, A theory of cooperative phenomena, Phys. Rev. 81, 988–1003 (1951).CrossRefGoogle Scholar
  55. 55.
    R. Kikuchi, Boundary free energy in the lattice model-III Solution of the paradox, J. Chem. Phys. 57, 787–798 (1972).CrossRefGoogle Scholar
  56. 56.
    L. D. Landau and E. M. Lifshitz, Statistical Physics, pp. 366–369, Addison-Wesley, Reading, Mass. (1958).Google Scholar
  57. 57.
    P. C. Clapp and S. C. Moss, Correlation functions in disordered binary alloys I, II, Phys. Rev. 171, 418–427; 754–763 (1968).Google Scholar
  58. 58.
    M. A. Krivoglaz, Theory of X-Ray and Thermal-Neutron Scattering by Real Crystals, Plenum, New York (1967).Google Scholar
  59. 59.
    S. Wilkins, Determination of long-range interaction energies from scattering of X-rays by disordered alloys, Phys. Rev. B 2, 3935–42 (1970).Google Scholar
  60. 60.
    D. de Fontaine, Bose-Einstein condensation of concentration fluctuations in binary solid solutions, in Critical Phenomena in Alloys, Magnets, and Superconductors (R. E. Mills, E. Ascher, and R. I. Jaffee, eds.), pp. 277–287 McGraw-Hill, New York (1971).Google Scholar
  61. 61.
    P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley, New York (1971).Google Scholar
  62. 62.
    E. L. Huston, J. W. Cahn, and J. E. Hilliard, Spinodal decomposition during continuous cooling, Acta Met. 14, 1053–1062 (1966).CrossRefGoogle Scholar
  63. 63.
    K. B. Rundman and J. E. Hilliard, Early stages of spinodal decomposition in an aluminum-zinc alloy, Acta Met. 15, 1025–1033 (1967).CrossRefGoogle Scholar
  64. 64.
    A. Guinier, Nouvelle interpretation des diagrammes à “side-bands,” Acta Met. 3, 510–512 (1955).Google Scholar
  65. 65.
    A. Bonfiglioli and A. Guinier, La structure des zones G.P. dans les alliages aluminium-zinc au premier stade de leur formation, Acta Met. 14, 1213–1224 (1966).CrossRefGoogle Scholar
  66. 66.
    H. E. Cook, The kinetics of clustering and short-range order in stable solid solutions, J. Phys. Chem. Solids 30, 2427–2437 (1969).CrossRefGoogle Scholar
  67. 67.
    H. E. Cook, Brownian motion in spinodal decomposition, Acta Met. 18, 297–306 (1970).CrossRefGoogle Scholar
  68. 68.
    Y. Yamauchi, Doctoral Dissertation, Northwestern Univ., Evanston, Ill. (1973).Google Scholar
  69. 69.
    R. Acuna Laje, Transformaciones de fases coherentes en aleaciones de Al-Zn, Doctoral Dissertation, IMAF, Universidad Nacional de Córdoba (1971).Google Scholar
  70. 70.
    D. Turnbull and J. C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17, 71–73 (1949).CrossRefGoogle Scholar
  71. 71.
    M. Avrami, Kinetics of phase change-I. General theory, J. Chem. Phys. 7, 1103–1112 (1939).CrossRefGoogle Scholar
  72. 72.
    W. A. Johnson and R. F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME 135, 416–458 (1939).Google Scholar
  73. 73.
    C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen, Z. Electrochem. 581–591 (1961).Google Scholar
  74. 74.
    I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19, 35–50 (1961).CrossRefGoogle Scholar
  75. 75.
    E. P. Butler and G. Thomas, Structure and properties of spinodally decomposed Cu—Ni—Fe alloys, Acta Met. 18, 347–365 (1970).CrossRefGoogle Scholar
  76. 76.
    R. Cadoret and P. Delavignette, Etude de la décomposition spinoidale au microscope electronique dans les alliages CuNiFe, Phys. Stat. Sol. 32, 853–865 (1969).CrossRefGoogle Scholar
  77. 77.
    J. W. Cahn, A correction to spinodal decomposition in cubic crystals, Acta Met. 12, 1457 (1964).CrossRefGoogle Scholar
  78. 78.
    R. B. Nicholson, unpublished work.Google Scholar
  79. 79.
    J. W. Cahn, Phase separation by spinodal decomposition in isotropic systems, J. Chem. Phys. 42, 93–99 (1965).CrossRefGoogle Scholar
  80. 80.
    J. W. Cahn and R. J. Charles, The initial stages of phase separation in glasses, Phys. Chem. Glasses 6, 181–191 (1965).Google Scholar
  81. 81.
    J. Zarzycki and F. Naudin, Spinodal decomposition in the B2O3—PbO—Al2O3 system, J. Non-Cryst. Solids 1, 215–234 (1969).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1975

Authors and Affiliations

  • D. de Fontaine
    • 1
  1. 1.School of Engineering and Applied ScienceUniversity of California at Los AngelesUSA

Personalised recommendations