Skip to main content

Clustering Effects in Solid Solutions

  • Chapter
Changes of State

Part of the book series: Treatise on Solid State Chemistry ((TSSC,volume 5))

Abstract

Solid-state transformations can be classified into two main categories: (a) homogeneous reactions, which occur in the bulk crystalline (or amorphous) phases, and (b) heterogeneous ones, which occur at structural defects such as grain boundaries, dislocations, etc. This chapter covers homogeneous reactions only, and particularly those transformations that are caused by instabilities or meta-stabilities of solid solutions to local compositional changes. Such replacive reactions can be of two types: (a) clustering transformations, which favor like-atom bonds, and (b) ordering transformations, which favor unlike bonds. Only clustering reactions are treated here, although the formalism can easily be extended to cover order—disorder reactions as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. W. Gibbs, On the equilibrium of heterogeneous substances, in Scientific Papers, pp. 105 and 252, Dover, New York (1961).

    Google Scholar 

  2. M. Volmer and A. Weber, Nuclei formation in supersaturated states, Z. Physik. Chem. 119, 277–301 (1925).

    Google Scholar 

  3. R. Becker and W. Döring, Kinetic treatment of grain formation in supersaturated vapors, Ann. Physik. 24, 719–752 (1935).

    Article  CAS  Google Scholar 

  4. D. Turnbull, Phase changes, in Solid State Physics ( F. Seitz and D. Turnbull, eds.), pp. 226–308, Academic, New York (1956).

    Google Scholar 

  5. J. W. Christian, The Theory of Phase Transformations in Metals and Alloys, Pergamon, London (1965).

    Google Scholar 

  6. K. C. Russell, Nucleation in solids, in Phase Transformations (H. I. Aaronson, ed.), pp. 219–268, American Society for Metals, Metals Park, Ohio (1970).

    Google Scholar 

  7. M. Hillert, A theory of nucleation of solid metallic solutions, D.Sc. Dissertation, Massachusetts Institute of Technology, Cambridge, Mass. (1956).

    Google Scholar 

  8. M. Hillert, A solid-solution model for inhomogeneous systems, Acta Met. 9, 525–535 (196i).

    Google Scholar 

  9. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, I. Interfacial free energy, J. Chem. Phys. 28, 258–267 (1958).

    CAS  Google Scholar 

  10. J. W. Cahn and J. E. Hilliard, Free energy of a nonuniform system, II. Nucleation in a two-compartment incompressible fluid, J. Chem. Phys. 31, 688–699 (1959).

    Article  CAS  Google Scholar 

  11. J. W. Cahn, On spinodal decomposition, Acta Met. 9, 795–801 (1961).

    Article  CAS  Google Scholar 

  12. J. W. Cahn, On spinodal decomposition in cubic crystals, Acta Met. 10, 179–183 (1962).

    Article  CAS  Google Scholar 

  13. J. W. Cahn, Coherent fluctuations and nucleation in isotropic solids, Acta Met. 10, 907–913 (1962).

    Article  CAS  Google Scholar 

  14. H. E. Cook, D. de Fontaine, and J. E. Hilliard, A model for diffusion on cubic lattices and its application to the early stages of ordering, Acta Met. 17, 765–773 (1969).

    Article  CAS  Google Scholar 

  15. D. de Fontaine and H. E. Cook, Early-stage clustering and ordering kinetics in binary solid solutions, in Critical Phenomena in Alloys, Magnets, and Superconductors (R. E. Mills, E. Ascher, and R. I. Jaffee, eds.), pp. 257–275, McGraw-Hill, New York (1971).

    Google Scholar 

  16. D. de Fontaine, A computer simulation of the evolution of coherent composition variations in solid solutions, Ph.D. Dissertation, Northwestern University, Evanston, Illinois (1967).

    Google Scholar 

  17. D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions-I. Stability criteria, J. Phys. Chem. Solids 33, 297–310 (1972).

    Article  CAS  Google Scholar 

  18. D. de Fontaine, An analysis of clustering and ordering in multicomponent solid solutions-II. Fluctuations and kinetics, J. Phys. Chem. Solids 34, 1285–1304 (1973).

    Article  CAS  Google Scholar 

  19. J. E. Morral and J. W. Cahn, Spinodal decomposition in ternary systems, Acta Met. 19, 1037–1045 (1971).

    Article  Google Scholar 

  20. D. de Fontaine, in Solid State Physics (H. Ehrenreich, F. Seitz and D. Turnbull, eds.), to be published.

    Google Scholar 

  21. J. W. Cahn, The later stages of spinodal decomposition and the beginnings of particle coarsening, Acta Met. 14, 1685–1692 (1966).

    Article  CAS  Google Scholar 

  22. J. S. Langer, Theory of spinodal decomposition in alloys, Ann. Phys. (N.Y.) 65, 53–86 (1971).

    Article  Google Scholar 

  23. L. H. Shendalman and J. T. O’Toole, Nucleation and coarsening in binary condensed phases, J. Colloid. Interface Sci. 27, 145–160 (1968).

    Article  CAS  Google Scholar 

  24. L. A. Swanger, P. K. Gupta, and A. R. Cooper, Jr., Computer simulation of one-dimensional spinodal decomposition, Acta Met. 18, 9–14 (1970).

    Article  Google Scholar 

  25. J. W. Cahn, Spinodal decomposition, Trans. AIME 242, 166–180 (1968).

    CAS  Google Scholar 

  26. J. W. Cahn, Unmixing in binary critical systems, in Critical Phenomena in Alloys, Magnets, and Superconductors (R. E. Mills, E. Ascher, and R. I. Jaffee, eds.), pp. 41–64, McGraw-Hill, New York (1971).

    Google Scholar 

  27. J. E. Hilliard, Spinodal decomposition, in Phase Transformations ( H. I. Aaronson, ed.), pp. 497–560, American Society for Metals, Metals Park, Ohio (1970).

    Google Scholar 

  28. D. de Fontaine, Development of fine coherent precipitate morphologies by the spinodal mechanisms, in Ultrafine Grain Metals (Burke and V. Weiss, eds.), pp. 93–131, Syracuse Univ. Press (1970).

    Google Scholar 

  29. A. Bonfiglioli, La decomposition espinodal, Comision Nacional de Energia Atomica PMM/I-91, Buenos Aires, Argentina (1972).

    Google Scholar 

  30. A. G. Khachaturyan and R. A. Suris, Theory of periodic distributions of concentrations in a supersaturated solid solution, Soviet Phys.-Crystallography 13, 63–67 (1968).

    Google Scholar 

  31. R. Kikuchi, Cooperative phenomena in the triangular lattice, J. Chem. Phys. 47, 1664–1668 (1967).

    Article  CAS  Google Scholar 

  32. P. C. Clapp, A critical examination of the validity of the pair-wise interaction model for ordered alloys, in Ordered Alloys: Structural Applications and Physical Metallurgy (B. H. Kear, ed.), pp. 25–35, Clator’s Press, Baton Rouge, La. (1970).

    Google Scholar 

  33. D. W. Hoffman, Configurational entropy and solute correlation in disordered alloys, Trans. AIME, in press.

    Google Scholar 

  34. R. Cadoret, A statistical treatment of the free energy of binary nonhomogeneous solutions, Phys. Stat. Sol. (b) 46, 291–298 (1971).

    Article  CAS  Google Scholar 

  35. J. F. Nye, Physical Properties of Crystals, Oxford Univ. Press (1957).

    Google Scholar 

  36. H. E. Cook and D. de Fontaine, On the elastic free energy of solid solutions-I. Microscopic theory, Acta Met. 17, 915–924 (1969).

    Article  CAS  Google Scholar 

  37. A. G. Khachaturyan, Microscopic theory of diffusion in crystalline solid solutions and the time evolution of the diffuse scattering of X-rays and thermal neutrons, Soviet Phys.-Solid State 9, 2040–2046 (1968).

    Google Scholar 

  38. H. E. Cook and D. de Fontaine, On the elastic free energy of solid solutions-II. Influence of the effective modulus on precipitation from solution and the order-disorder reaction, Acta Met. 19, 607–616 (1971).

    Article  CAS  Google Scholar 

  39. D. W. Hoffman, Concerning the elastic energy of dilute interstitial alloys, Acta Met. 18, 819–833 (1970).

    Article  CAS  Google Scholar 

  40. W. H. Zachariasen, X-Ray Diffraction in Crystals, Wiley, New York (1945).

    Google Scholar 

  41. A. Guinier, A new type of X-ray diagram, Compt. Rend. 206, 1641–1643 (1938).

    CAS  Google Scholar 

  42. G. D. Preston, The diffraction of X-rays by age-hardening Al-Cu alloys, Proc. Roy. Soc. A167, 526–538 (1938).

    Article  CAS  Google Scholar 

  43. M. Murakami, O. Kawano, and Y. Murakami, On the determination of the solvus temperature for G.P. zones in an AI-0.8 at. % Zn alloy, J. Inst. Metals (London) 99, 160 (1971).

    CAS  Google Scholar 

  44. J. Lasek, Über die Einfluss der durchschnittlichen Zusammensetzung auf die Lage der kohärenten Mischungslücke von Al-Zn Legierungen, Czech. J. Phys. 15, 848–857 (1965).

    CAS  Google Scholar 

  45. V. Gerold, Die Zonebildung in AI Zn Legierungen, Phys. Stat. Sol. 1, 37–49 (1961).

    Article  CAS  Google Scholar 

  46. V. Gerold and W. Mertz, On the decomposition of an aluminum-zinc alloy, Scripta Met. 1, 33–35 (1967).

    Article  CAS  Google Scholar 

  47. G. J. C. Carpenter and R. D. Garwood, Hardness reversion and the metastable phase boundary for G.P. zones in Al-Zn alloys, J. Inst. Metals (London), 94, 301–304 (1966).

    CAS  Google Scholar 

  48. T. Niklewski, P. Spiegelberg, and K. Sunbulli, The solvus curve for G.P. zones in Al-Zn alloys: A diffuse X-ray study, Metal Sci. J. 3, 23–25 (1969).

    CAS  Google Scholar 

  49. A. J. Ardell, K. Nuttall, and R. B. Nicholson, The decomposition of concentrated Al-Zn alloys, in The Mechanism of Phase Transformation in Crystalline Solids, pp. 22–26, The Institute of Metals, London, England (1968).

    Google Scholar 

  50. B. Golding and S. C. Moss, A recalculation of the gold nickel spinodal, Acta Met. 15, 1239–1241 (1967).

    Article  CAS  Google Scholar 

  51. D. de Fontaine, An approximate criterion for the loss of coherency in modulated structures, Acta Met. 17, 477–482 (1969).

    Article  CAS  Google Scholar 

  52. H. Goldstein, Classical Mechanics, p. 53, Addison-Wesley, Reading, Mass. (1950).

    Google Scholar 

  53. G. A. Korn and T. M. Korn, Mathematical Handbook for Scientists and Engineers, pp. 830–841, McGraw-Hill, New York (1968).

    Google Scholar 

  54. R. Kikuchi, A theory of cooperative phenomena, Phys. Rev. 81, 988–1003 (1951).

    Article  Google Scholar 

  55. R. Kikuchi, Boundary free energy in the lattice model-III Solution of the paradox, J. Chem. Phys. 57, 787–798 (1972).

    Article  CAS  Google Scholar 

  56. L. D. Landau and E. M. Lifshitz, Statistical Physics, pp. 366–369, Addison-Wesley, Reading, Mass. (1958).

    Google Scholar 

  57. P. C. Clapp and S. C. Moss, Correlation functions in disordered binary alloys I, II, Phys. Rev. 171, 418–427; 754–763 (1968).

    Google Scholar 

  58. M. A. Krivoglaz, Theory of X-Ray and Thermal-Neutron Scattering by Real Crystals, Plenum, New York (1967).

    Google Scholar 

  59. S. Wilkins, Determination of long-range interaction energies from scattering of X-rays by disordered alloys, Phys. Rev. B 2, 3935–42 (1970).

    Google Scholar 

  60. D. de Fontaine, Bose-Einstein condensation of concentration fluctuations in binary solid solutions, in Critical Phenomena in Alloys, Magnets, and Superconductors (R. E. Mills, E. Ascher, and R. I. Jaffee, eds.), pp. 277–287 McGraw-Hill, New York (1971).

    Google Scholar 

  61. P. Glansdorff and I. Prigogine, Thermodynamic Theory of Structure, Stability and Fluctuations, Wiley, New York (1971).

    Google Scholar 

  62. E. L. Huston, J. W. Cahn, and J. E. Hilliard, Spinodal decomposition during continuous cooling, Acta Met. 14, 1053–1062 (1966).

    Article  Google Scholar 

  63. K. B. Rundman and J. E. Hilliard, Early stages of spinodal decomposition in an aluminum-zinc alloy, Acta Met. 15, 1025–1033 (1967).

    Article  CAS  Google Scholar 

  64. A. Guinier, Nouvelle interpretation des diagrammes à “side-bands,” Acta Met. 3, 510–512 (1955).

    Google Scholar 

  65. A. Bonfiglioli and A. Guinier, La structure des zones G.P. dans les alliages aluminium-zinc au premier stade de leur formation, Acta Met. 14, 1213–1224 (1966).

    Article  CAS  Google Scholar 

  66. H. E. Cook, The kinetics of clustering and short-range order in stable solid solutions, J. Phys. Chem. Solids 30, 2427–2437 (1969).

    Article  CAS  Google Scholar 

  67. H. E. Cook, Brownian motion in spinodal decomposition, Acta Met. 18, 297–306 (1970).

    Article  CAS  Google Scholar 

  68. Y. Yamauchi, Doctoral Dissertation, Northwestern Univ., Evanston, Ill. (1973).

    Google Scholar 

  69. R. Acuna Laje, Transformaciones de fases coherentes en aleaciones de Al-Zn, Doctoral Dissertation, IMAF, Universidad Nacional de Córdoba (1971).

    Google Scholar 

  70. D. Turnbull and J. C. Fisher, Rate of nucleation in condensed systems, J. Chem. Phys. 17, 71–73 (1949).

    Article  CAS  Google Scholar 

  71. M. Avrami, Kinetics of phase change-I. General theory, J. Chem. Phys. 7, 1103–1112 (1939).

    Article  CAS  Google Scholar 

  72. W. A. Johnson and R. F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. AIME 135, 416–458 (1939).

    Google Scholar 

  73. C. Wagner, Theorie der Alterung von Niederschlägen durch Umlösen, Z. Electrochem. 581–591 (1961).

    Google Scholar 

  74. I. M. Lifshitz and V. V. Slyozov, The kinetics of precipitation from supersaturated solid solutions, J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  75. E. P. Butler and G. Thomas, Structure and properties of spinodally decomposed Cu—Ni—Fe alloys, Acta Met. 18, 347–365 (1970).

    Article  CAS  Google Scholar 

  76. R. Cadoret and P. Delavignette, Etude de la décomposition spinoidale au microscope electronique dans les alliages CuNiFe, Phys. Stat. Sol. 32, 853–865 (1969).

    Article  CAS  Google Scholar 

  77. J. W. Cahn, A correction to spinodal decomposition in cubic crystals, Acta Met. 12, 1457 (1964).

    Article  CAS  Google Scholar 

  78. R. B. Nicholson, unpublished work.

    Google Scholar 

  79. J. W. Cahn, Phase separation by spinodal decomposition in isotropic systems, J. Chem. Phys. 42, 93–99 (1965).

    Article  CAS  Google Scholar 

  80. J. W. Cahn and R. J. Charles, The initial stages of phase separation in glasses, Phys. Chem. Glasses 6, 181–191 (1965).

    CAS  Google Scholar 

  81. J. Zarzycki and F. Naudin, Spinodal decomposition in the B2O3—PbO—Al2O3 system, J. Non-Cryst. Solids 1, 215–234 (1969).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

de Fontaine, D. (1975). Clustering Effects in Solid Solutions. In: Hannay, N.B. (eds) Changes of State. Treatise on Solid State Chemistry, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1120-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1120-2_3

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1122-6

  • Online ISBN: 978-1-4757-1120-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics