Skip to main content

Transitions in Viscous Liquids and Glasses

  • Chapter
Changes of State

Part of the book series: Treatise on Solid State Chemistry ((TSSC,volume 5))

Abstract

This chapter surveys transitions between the viscous liquid state and the glass, phase-separated, or crystalline states and some of the uses of these transitions in altering the structure and properties of solids. In addition to its intrinsic interest, the liquid ↔ glass transition is important for kinetically limiting the other two types of transition. It is these limiting effects which make possible the formation of quite unique structures in the transitions. We will begin by reviewing the liquid ↔ glass transition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. E. U. Condon, Physics of the glassy state. I. Constitution and structure, Am. J. Phys. 22, 43–53 (1954).

    Article  CAS  Google Scholar 

  2. W. Kauzman, The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev. 43, 219–256 (1948).

    Article  Google Scholar 

  3. G. Hetherington, K. J. Jack, and J. C. Kennedy, The viscosity of vitreous SiO2, Phys. Chem. Glasses 5, 130–136 (1964).

    CAS  Google Scholar 

  4. C. R. Kurkjan and R. W. Douglas, The viscosity of glasses in the system Na2O-GeO2, Phys. Chem. Glasses 1, 19–25 (1960).

    Google Scholar 

  5. J. P. De Neufville, C. H. Drummond III, and D. Turnbull, The effect of excess Ge on the viscosity of GeO2, Phys. Chem. Glasses 11, 186–191 (1970).

    CAS  Google Scholar 

  6. S. Glasstone, K. J. Laidler, and H. Eyring, Theory of Rate Processes, pp. 477–551, McGraw-Hill, New York (1941).

    Google Scholar 

  7. R. B. Sosman, Properties of Fused SiO 2, p. 313, Chem. Catalog Corp., New York (1927).

    Google Scholar 

  8. K. K. Kelley and A. U. Christensen, U.S. Bur. Mines, R.I. 5710 (1961).

    Google Scholar 

  9. R. Bruckner, Properties and structure of vitreous SiO2, J. Non-Crystalline Solids 5, 123–216 (1970).

    Article  Google Scholar 

  10. D. E. Polk and D. Turnbull, Structure of amorphous semiconductors, J. Non-Crystalline Solids 810, 19–35 (1972).

    Google Scholar 

  11. H. Vogel, Das Temperaturabhängigkeitsgesetz auf die Viscositat von Flussigkeiten, Phys. Z. 22, 645–646 (1921).

    CAS  Google Scholar 

  12. G. S. Fulcher, Analysis of recent measurements of the viscosity of glasses, J. Am. Ceramic Soc. 6, 339 (1925).

    Article  Google Scholar 

  13. M. H. Cohen and D. Turnbull, Molecular transport in liquids and glasses, J. Chem. Phys. 31, 1164–1169 (1959).

    Article  CAS  Google Scholar 

  14. M. Cukierman, J. W. Lane, and D. R. Uhlmann, High temperature flow behavior of glass-forming liquids: A free volume interpretation, J. Chem. Phys. 59, 3639–3644 (1973).

    Article  CAS  Google Scholar 

  15. M. L. Williams, R. F. Landel, and J. D. Ferry, The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids, J. Am. Chem. Soc. 77, 3701–3707 (1955).

    Article  CAS  Google Scholar 

  16. W. T. Laughlin and D. R. Uhlmann, Viscous flow in simple organic liquids, J. Phys. Chem. 76, 2317–2325 (1972).

    Article  Google Scholar 

  17. J. H. Gibbs and E. A. DiMarzio, Nature of the glass transition and the glassy state, J. Chem. Phys. 28, 373–383 (1958).

    Article  CAS  Google Scholar 

  18. D. Turnbull and M. H. Cohen, On the free volume model of the liquid—glass transition, J. Chem. Phys. 52, 3038–3041 (1970).

    Article  Google Scholar 

  19. F. Bueche, Mobility of molecules in liquids near the glass temperature, J. Chem. Phys. 30, 748–752 (1959).

    Article  CAS  Google Scholar 

  20. B. J. Alder, W. G. Hoover, and D. A. Young, Studies in molecular dynamics. V. High density equation of state and entropy for hard discs and spheres, J. Chem. Phys. 49, 3688–3696 (1968).

    Article  CAS  Google Scholar 

  21. M. H. Cohen and D. Turnbull, Metastability of amorphous structures, Nature 203, 964 (1964).

    Article  Google Scholar 

  22. B. J. Alder, D. M. Gass, and T. E. Wainwright, Studies in molecular dynamics. VIII. The transport coefficients for a hard sphere fluid, J. Chem. Phys. 53, 3813–3826 (1970).

    Article  CAS  Google Scholar 

  23. D. Weaire, M. F. Ashby, J. Logan, and M. J. Weins, On the use of pair potentials to calculate the properties of amorphous metals, Acta Met. 19, 779–788 (1971).

    Article  CAS  Google Scholar 

  24. E. J. Le Fevre, Equation of state for hard-sphere fluid, Nature, Phys. Sci. 235, 20 (1972).

    Google Scholar 

  25. J. H. Dymond and B. J. Alder, Van der Waals theory of transport in dense fluids, J. Chem. Phys. 45, 2061–2068 (1966).

    Article  CAS  Google Scholar 

  26. G. Adam and J. H. Gibbs, On the temperature dependence of Cooperative relaxation properties in glass-forming liquids, J. Chem. Phys. 43, 139–146 (1965).

    Article  CAS  Google Scholar 

  27. H. S. Chen and D. Turnbull, Evidence of a glass-liquid transition in a Au-Ge-Si Alloy, J. Chem. Phys. 48, 2560 (1968).

    Article  CAS  Google Scholar 

  28. G. C. Berry and T. G. Fox, The viscosity of polymers and their concentrated solutions, Adv. Polymer Sci. 5, 261–357 (1968).

    Article  Google Scholar 

  29. C. A. Angell and K. J. Rao, Configurational excitations in condensed matter and the bond-lattice model for the glass Transition, J. Chem. Phys. 57, 470–481 (1972).

    Article  CAS  Google Scholar 

  30. M. Goldstein, Viscous liquids and the glass transition: A potential energy barrier picture, J. Chem. Phys. 51, 3728–3739 (1969).

    Article  CAS  Google Scholar 

  31. N. Hirai and H. Eyring, Bulk viscosity of polymeric systems, J. Polymer Sci. 37, 51–70 (1959).

    Article  CAS  Google Scholar 

  32. N. Hirai, Liquid viscosity near the glass transition temperature, Rep. Surface Sci. 2, 51 (1962).

    CAS  Google Scholar 

  33. J. W. Cahn, Spinodal decomposition, Trans. Met. Soc. AIME 242, 166–180 (1968).

    Google Scholar 

  34. J. E. Hilliard, Spinodal decomposition, in Phase Transformations, pp. 497–560, Am. Soc. Metals, Metals Park, Ohio (1970).

    Google Scholar 

  35. R. D. Maurer, Crystallization of a titania-nucleated glass, in Symposium on Nucleation and Crystallization in Glasses and Melts (Reser, Smith, and Insley, eds.), pp. 5–9, Am. Ceramic Soc., Columbus, Ohio (1962).

    Google Scholar 

  36. J. E. Morrai, Ph.D. Thesis, Dept. of Mat. Sci., M.I.T. (1968); J. E. Morrai, Stability limits for ternary systems, Acta Met. 20, 1061–1076 (1972).

    Article  Google Scholar 

  37. D. Turnbull, Under what conditions can a glass be formed, Contemporary Physics 10, 473–488 (1969).

    Article  CAS  Google Scholar 

  38. W. B. Hillig and D. Turnbull, Theory of crystal growth in undercooled pure liquids, J. Chem. Phys. 24, 914 (1956).

    Article  CAS  Google Scholar 

  39. D. Turnbull and M. H. Cohen, Crystallization kinetics and glass formation, in Modern Aspects of the Vitreous State (J. D. MacKenzie, ed.), 1, pp. 38–62, Butterworth’s, London (1960).

    Google Scholar 

  40. K. A. Jackson, Nature of solid—liquid interfaces, in Growth and Perfection of Crystals (R. H. Doremus, B. W. Roberts, and D. Turnbull, eds.), pp. 319–325, Wiley, New York (1958).

    Google Scholar 

  41. K. A. Jackson, D. R. Uhlmann, and J. D. Hunt, On the nature of crystal growth from the melt, J. Crystal Growth 1, 1–36 (1967).

    Article  CAS  Google Scholar 

  42. W. K. Burton, N. Cabrera, and F. C. Frank, The growth of crystals and the equilibrium structure of their surfaces, Phil. Trans. Roy. Soc. (London) 243, 299–358 (1951).

    Article  Google Scholar 

  43. J. W. Cahn, Theory of crystal growth and interface motion in crystalline materials, Acta Met. 8, 554–562 (1960).

    Article  CAS  Google Scholar 

  44. K. A. Jackson, Theory of crystal growth, this volume, Chapter 5.

    Google Scholar 

  45. D. Turnbull, On the relation between crystallization rate and liquid structure, J. Phys. Chem. 66, 609–613 (1962).

    Article  CAS  Google Scholar 

  46. D. Turnbull, Amorphous solid formation and interstitial solution behavior in metallic systems, Proceedings of Conference on Disordered Systems (Strasbourg, 1973), J. de Physique 35, colloque-4, C4. 1–4. 9 (1974).

    Google Scholar 

  47. J. L. Walker, reported by B. Chalmers, Principles of Solidification, pp. 114–116, Wiley, New York (1964).

    Google Scholar 

  48. N. G. Ainslie, C. R. Morelock, and D. Turnbull, Devitrification kinetics of fused silica, in Symposium on Nucleation and Crystallization in Glasses and Melts (M. K. Reser, G. Smith, and H. Insley, eds.), pp. 97–107, Am. Ceram. Soc., Columbus, Ohio (1962).

    Google Scholar 

  49. R. C. Keezer and M. W. Bailey, The structure of liquid Se from viscosity measurements, Mat. Res. Bull. 2, 185–192 (1967).

    Article  CAS  Google Scholar 

  50. P. J. Vergano and D. R. Uhlmann, Crystallization kinetics of GeO2; the effects of stoichiometry on kinetics, Phys. Chem. Glasses 11, 30–38 (1970).

    CAS  Google Scholar 

  51. D. R. Uhlmann, J. F. Hays, and D. Turnbull, The effect of high pressure on crystallization kinetics with special reference to fused silica, Phys. and Chem. Glasses 7, 159–168 (1966).

    CAS  Google Scholar 

  52. J. D. MacKenzie and W. F. Claussen, Crystallization and phase relations of B2O3 at high pressures, J. Am. Ceram. Soc. 44, 79–81 (1961).

    Article  Google Scholar 

  53. D. R. Uhlmann, J. F. Hays, and D. Turnbull, The effect of high pressure on BZO3: crystallization, densification and the crystallization anomaly, Phys. Chem. Glasses 8, 1–10 (1967).

    CAS  Google Scholar 

  54. O. Shimomura, S. Minomura, N. Sakai, K. Asaumi, K. Tamura, J. Fukushima, and H. Endo, Pressure-induced semiconductor-metal transitions in amorphous Si and Ge, Phil. Mag. 29, 547–558 (1974).

    Article  CAS  Google Scholar 

  55. The Ad Hoc Committee on the Fundamentals of Amorphous Semiconductors, Fundamentals of Amorphous Semiconductors,National Academy of Sciences-National Academy of Engineering Publication NMAB-284 (September 1971).

    Google Scholar 

  56. D. Adler, Amorphous semiconductors, CRC Crit. Rev. Solid State Sci. 2, 317–465 (1971).

    Article  CAS  Google Scholar 

  57. W. Doremus, ed., Proceedings of the symposium on semiconductor effects in Amorphous solids, New York, May 1969, J. Non-Cryst. Solids 2 (1970).

    Google Scholar 

  58. Sir Neville Mott, ed., Proceedings of the international conference on amorphous and liquid semiconductors, Cambridge, Sept. 1969, J. Non-Cryst. Solids 4 (1970).

    Google Scholar 

  59. M. H. Cohen and G. Lucovsky, eds., Proceedings of the fourth international conference on amorphous and liquid semiconductors, Ann Arbor, August 1971, J. Non-Cryst. Solids 8–10 (1972).

    Google Scholar 

  60. Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors,Garmisch-Partenkirchen, September 1973 (J. Stuke and W. Brenig, eds.), Taylor and Francis, Ltd., London (1974).

    Google Scholar 

  61. H. Fritzsche, Switching and memory in amorphous semiconductors, in Amorphous and Liquid Semiconductors (J. Tauc, ed.), Chapter 6, pp. 313–359, Plenum Press, New York (1974).

    Chapter  Google Scholar 

  62. A. D. Pearson, Memory and switching in semiconducting glasses, a review, J. Non-Cryst. Solids 2, 1–15 (1970).

    Article  CAS  Google Scholar 

  63. S. R. Ovshinsky, An introduction to ovonic research, J. Non-Cryst. Solids 2, 99–106 (1970).

    Article  Google Scholar 

  64. P. J. Walsh, R. Vogel, and E. J. Evans, Conduction and electrical switching in amorphous chalcogenide semiconductor films, Phys. Rev. 178, 1274–1279 (1969).

    Article  CAS  Google Scholar 

  65. E. A. Fagen and H. Fritzsche, Electrical conductivity of amorphous chalcogenide alloy films, J. Non-Cryst. Solids 2, 170–179 (1970).

    Article  CAS  Google Scholar 

  66. J. M. Robertson and A. E. Owen, Electronically-assisted thermal breakdown in chalcogenide glasses, J. Non-Cryst. Solids 8–10, 439–444 (1972).

    Article  Google Scholar 

  67. S. R. Ovshinsky, Reversible electrical switching phenomena in disordered structures, Phys. Rev. Lett. 21, 1450–1453 (1968).

    Article  Google Scholar 

  68. B. T. Kolomiets, E. A. Lebedev, and I. A. Taksami, Mechanism of the breakdown in films of glassy chalcogenide semiconductors, Soviet Phys.—Semiconductors 3, 267–268 (1969).

    Google Scholar 

  69. R. R. Shanks, Ovonic threshold switching characteristics, J. Non-Cryst. Solids 2, 504–514 (1970).

    Article  Google Scholar 

  70. K. Tanaka, S. Iizima, M. Sugi, Y. Okada, and M. Kikuchi, Thermal effect on switching phenomenon in chalcogenide amorphous semiconductors, Solid State Commun. 8, 387–389 (1970).

    Article  CAS  Google Scholar 

  71. M. Sugi, M. Kikuchi, I. Iizima, and K. Tanaka, Switching characteristics of chalcogenide glass, Solid State Commun. 7, 1805–1807 (1969).

    Article  Google Scholar 

  72. D. R. Haberland, Ladungsbedingter Schaltmechanismus in Glashalbleitern, Solid-State Electronics 13, 207–217 (1970).

    Article  Google Scholar 

  73. D. R. Haberland and H. Stiegler, New experiments on the charge-controlled switching effect in amorphous semiconductors, J. Non-Cryst. Solids 8–10, 408–414 (1972).

    Article  Google Scholar 

  74. A. Csillag and H. Jäger, Energy-controlled switching process in the amorphous system Te–As–Ge–Si, J. Non-Cryst. Solids 2, 133–140 (1970).

    Article  CAS  Google Scholar 

  75. I. Balberg, Simple test for double injection initiation of switching, Appl. Phys. Lett. 16, 491–493 (1970).

    Article  Google Scholar 

  76. H. K. Henisch and R. W. Pryor, On the mechanism of ovonic threshold switching, Solid-State Electronics 14, 765–774 (1971).

    Article  CAS  Google Scholar 

  77. R. W. Pryor and H. K. Henisch, Nature of the on-state in chalcogenide glass threshold switches, J. Non-Cryst. Solids 7, 181–191 (1972).

    Article  CAS  Google Scholar 

  78. H. K. Henisch and G. J. Vendura, Jr., Characteristics of ovonic threshold switches with crystalline semiconductor electrodes, Appl. Phys. Lett. 19, 363–365 (1971).

    Article  CAS  Google Scholar 

  79. H. K. Henisch, R. W. Pryor, and G. J. Vendura, Jr., Characteristics and mechanism of threshold switching, J. Non-Cryst. Solids 8–10, 415–421 (1972).

    Article  Google Scholar 

  80. G. J. Vendura, Jr., and H. K. Henisch, Behavior of amorphous semiconductor films between asymmetric electrodes, J. Non-Cryst. Solids 11, 105–112 (1972).

    Article  CAS  Google Scholar 

  81. H. Stiegler and D. R. Haberland, The switching behavior of chalcogenide glass with semiconducting electrodes, J. Non-Cryst. Solids 11, 147–152 (1972).

    Article  CAS  Google Scholar 

  82. R. Holstrom, Switching and conduction behavior of amorphous semiconductor diodes, Proc. IEEE 57, 1451–1453 (1969).

    Article  Google Scholar 

  83. A. C. Warren, Switching mechanism in chalcogenide glasses, Electronics Letters 5, 461–462 (1969).

    Article  CAS  Google Scholar 

  84. P. Burton and R. W. Brander, Thermal breakdown and switching in chalcogenide glasses, Int. J. Electronics 27, 517–525 (1969).

    Article  CAS  Google Scholar 

  85. D. L. Thomas and A. C. Warren, Preswitching behavior of amorphous chalcogenide semiconductor films, Electronic Letters 6, 62–64 (1970).

    Article  CAS  Google Scholar 

  86. F. M. Collins, Switching by thermal avalanche in semiconducting glass films, J. Non-Cryst. Solids 2, 496–503 (1970).

    Article  Google Scholar 

  87. H. Fritzsche and S. R. Ovshinsky, Conduction and switching phenomena in covalent alloy semiconductors, J. Non-Cryst. Solids 4, 464–479 (1970).

    Article  Google Scholar 

  88. H. J. Stocker, C. A. Barlow, Jr., and D. F. Weirauch, Mechanism of threshold switching in semiconducting glasses, J. Non-Cryst. Solids 4, 523–535 (1970).

    Article  CAS  Google Scholar 

  89. A. C. Warren, Thermal switching in semiconducting glasses, J. Non-Cryst. Solids 4, 613–616 (1970).

    Article  CAS  Google Scholar 

  90. H. S. Chen and T. T. Wang, On the theory of switching phenomena in semiconducting glasses, Phys. Stat. Sol. 2, 79–84 (1970).

    Article  CAS  Google Scholar 

  91. D. D. Thornburg, Role of capacitive discharge energy in the switching of semiconducting glasses, Phys. Rev. Lett. 27, 1208–1210 (1971).

    Article  CAS  Google Scholar 

  92. D. L. Thomas and J. C. Male, Thermal breakdown in chalcogenide glasses, J. Non-Cryst. Solids 8–10, 522–530 (1972).

    Article  Google Scholar 

  93. N. Croitoru and C. Popescu, Approximations and boundary conditions in the theory of thermal instabilities, J. Non-Cryst. Solids 11, 397–401 (1973).

    Article  Google Scholar 

  94. J. C. Male and D. L. Thomas, Intrinsic instability and current channelling in thermally controlled two-terminal switching devices, J. Non-Cryst. Solids 13 409422 (1973/74).

    Google Scholar 

  95. K. Shimakawa, Y. Inagaki, and T. Arizumi, Thermal switching in chalcogenide glass semiconductors, Japan. J. Appl. Phys. 12, 1043–1046 (1973).

    Article  CAS  Google Scholar 

  96. K. W. Böer and S. R. Ovshinsky, Electrothermal initiation of an electronic switching mechanism in semiconducting glasses, J. Appl. Phys. 41, 2675–2681 (1970).

    Article  Google Scholar 

  97. A. C. Warren and J. C. Male, Field-enhanced conductivity effects in thin chalcogenide-glass switches, Electronics Letters 6, 567–569 (1970).

    Article  Google Scholar 

  98. K. W. Böer, G. Döhler, and S. R. Ovshinsky, Time delay for reversible electric switching in semiconducting glasses, J. Non-Cryst. Solids 4, 573–582 (1970).

    Article  Google Scholar 

  99. W. W. Sheng and C. R. Westgate, On the preswitching phenomena in semiconducting glasses, Solid State Commun. 9, 387–391 (1971).

    Article  CAS  Google Scholar 

  100. T. Kaplan and D. Adler, Thermal effects in amorphous-semiconductor switching, Appl. Phys. Lett. 19, 418–420 (1971).

    Article  CAS  Google Scholar 

  101. K. W. Böer, Electro-thermal effects in ovonics, Phys. Stat. Sol. 4, 571–596 (1971).

    Article  Google Scholar 

  102. A. H. M. Shousha, Negative differential conductivity due to electrothermal instabilities in thin amorphous films, J. Appl. Phys. 42 5131–5136 (1971).

    Article  CAS  Google Scholar 

  103. C. Popescu and N. Croitoru, The contribution of the lateral thermal instability to the switching phenomenon, J. Non-Cryst. Solids 8–10, 531–537 (1972).

    Article  Google Scholar 

  104. T. Kaplan and D. Adler, Electrothermal switching in amorphous semiconductors, J. Non-Cryst. Solids 8–10, 538–543 (1972).

    Google Scholar 

  105. D. M. Kroll and M. H. Cohen, Theory of electrical instabilities of mixed electronic and thermal origin, J. Non-Cryst. Solids 8–10, 544–551 (1972).

    Google Scholar 

  106. D. M. Kroll, Ph.D. thesis, Physics Department, The University of Chicago, 1973.

    Google Scholar 

  107. M. P. Shaw, S. H. Holmberg and S. A. Kostylev, Reversible switching in thin amorphous chalcogenide films—electronic effects, Phys. Rev. Lett. 31, 542–545 (1973).

    Article  CAS  Google Scholar 

  108. B. T. Kolomiets, E. A. Lebedev, and E. A. Smorgonskaya, Breakdown mechanism of chalcogenide glasses, Soviet Phys. Semiconductors 6, 1766–1767 (1973).

    Google Scholar 

  109. N. K. Hindley, Random phase model of amorphous semiconductors, I. Transport and optical properties. II. Hot electrons, J. Non-Cryst. Solids 5, 17–40 (1970).

    Article  CAS  Google Scholar 

  110. N. F. Mott, Conduction in non-crystalline systems. VII. Non-ohmic behavior and switching, Phil. Mag. 24, 911–934 (1971).

    Article  CAS  Google Scholar 

  111. N. F. Mott, Conduction and switching in non-crystalline materials, Contemp. Phys. 10, 125–138 (1969).

    Article  CAS  Google Scholar 

  112. H. K. Henisch, E. A. Fagen, and S. R. Ovshinsky, A qualitative theory of electrical switching processes in monostable amorphous structures, J. Non-Cryst. Solids 4, 538–547 (1970).

    Article  CAS  Google Scholar 

  113. W. Heywang and D. R. Haberland, Zur Frage des Schalteffekts in Amorphen Halbleitern, Solid State Electronics 13, 1077–1079 (1970).

    Article  Google Scholar 

  114. F. W. Schmidlin, Electrical switching device based on charge-controlled double injection, Phys. Rev. B 1, 1583–1587 (1970).

    Google Scholar 

  115. I. Lucas, Interpretation of the switching effect in amorphous semiconductors as a recombination instability, J. Non-Cryst. Solids 6, 136–144 (1971).

    Article  CAS  Google Scholar 

  116. H. Fritzsche and S. R. Ovshinsky, Electrical conduction in amorphous semiconductors and the physics of the switching phenomena, J. Non-Cryst. Solids 2, 393–405 (1970).

    Article  CAS  Google Scholar 

  117. M. Iida and A. Hamada, Electrical switching in mobility-gap materials, Japan. J. Appl. Phys. 10, 224–227 (1971).

    Article  Google Scholar 

  118. B. G. Bagley, The field dependent mobility of localized electronic carriers, Solid State Commun. 8, 345–348 (1970).

    Article  CAS  Google Scholar 

  119. H. K. Henisch, W. R. Smith, and W. Wihl, Field-dependent photoresponse of threshold switching systems, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors, Garmisch-Partenkirchen, September 1973 (J. Stuke and W. Brenig, eds.), Vol. 1, 567–570, Taylor and Francis Ltd., London (1974).

    Google Scholar 

  120. W. van Roosbroeck, Electronic basis of switching in amorphous semiconductor alloys, Phys. Rev. Lett. 28, 1120–1123 123 (1972).

    Google Scholar 

  121. W. van Roosbroeck, Principles of electrical behavior of amorphous semiconductor alloys, J. Non-Cryst. Solids 12, 232–262 (1973).

    Article  Google Scholar 

  122. E. J. Evans, J. H. Helbers, and S. R. Ovshinsky, Reversible conductivity transformations in chalcogenide alloy films, J. Non-Cryst. Solids 2, 334–346 (1970).

    Article  CAS  Google Scholar 

  123. T. N. Vengel and B. T. Kolomiets, Vitreous semiconductors; some properties of materials in the As2Se3 As2Te3 system, Soviet Phys.—Technical Physics 2, 2314–2319 (1957).

    CAS  Google Scholar 

  124. B. G. Bagley and H. E. Bair, Thermally induced transformations in glassy chalcogenides, J. Non-Cryst. Solids 2, 155–160 (1970).

    Article  CAS  Google Scholar 

  125. H. Fritzsche and S. R. Ovshinsky, Calorimetric and dilatometric studies on chalcogenide glasses, J. Non-Cryst. Solids 2, 148–154 (1970).

    Article  CAS  Google Scholar 

  126. S. V. Phillips, R. E. Booth, and P. W. McMillan, Structural changes related to electrical properties of bulk chalcogenide glasses, J. Non-Cryst. Solids 4, 510–517 (1970).

    Article  CAS  Google Scholar 

  127. R. Pinto, Threshold and memory switching in thin films of the chalcogenide systems Ge-As-Te and Ge-As-Se, Thin Solid Films 7, 391–404 (1971).

    Article  CAS  Google Scholar 

  128. J. A. Savage, Glass forming region and DTA survey in the Ge-As-Te memory switching glass system, J. Mat. Sci. 6, 964–968 (1971).

    Article  CAS  Google Scholar 

  129. D. L. Eaton, Electrical conduction anomaly of semiconducting glasses in the system As-Te-I, J. Am. Ceramic Soc. 47, 554–558 (1964).

    Article  CAS  Google Scholar 

  130. H. J. Stocker, Bulk and thin film switching and memory effects in semiconducting chalcogenide glasses, Appl. Phys. Lett. 15, 55–57 (1969).

    Article  CAS  Google Scholar 

  131. M. Kikuchi, S. Iizima, M. Sugi, and K. Tanaka, Lock-on phenomenon in amorphous semiconductors, Japan Soc. Appl. Phys. 39 (Suppl.), 203–210 (1970).

    Google Scholar 

  132. M. Kikuchi and S. Iizima, Memory exchange in amorphous semiconductors, Appl. Phys. Lett. 15, 323–325 (1969).

    Article  Google Scholar 

  133. K. Tanaka, S. Iizima, M. Sugi, and M. Kikuchi, Electrical nature of the lock-on filament in amorphous semiconductors, Solid State Commun. 8, 75–78 (1970).

    Article  CAS  Google Scholar 

  134. R. Uttecht, H. Stevenson, C. H. Sie, J. D. Griener, and K. S. Raghavan, Electric field-induced filament formation in As-Te-Ge glass, J. Non-Cryst. Solids 2, 358–370 (1970).

    Article  CAS  Google Scholar 

  135. C. H. Sie, Electron microprobe analysis and radiometric microscopy of electric field induced filament formation on the surface of As-Te-Ge glass, J. Non-Cryst. Solids 4, 548–553 (1970).

    Article  CAS  Google Scholar 

  136. D. R. Haberland and H. P. Kehrer, Mikroskopische Untersuchungen an Festkörperschaltern aus Halbleitendem Glas, Solid-State Electronics 13, 451–455 (1970).

    Article  Google Scholar 

  137. D. Armitage and C. H. Champness, Memory switching and crystallization in selenium, Can. J. Phys. 49, 2718–2723 (1971).

    Article  CAS  Google Scholar 

  138. R. Pinto and K. V. Ramanathan, Electric field induced memory switching in thin films of the chalcogenide system Ge-As-Se, Appl. Phys. Lett. 19, 221–223 (1971).

    Article  CAS  Google Scholar 

  139. D. Armitage and C. H. Champness, Switching in amorphous selenium, J. NonCryst. Solids 7, 410–416 (1972).

    Article  CAS  Google Scholar 

  140. C. H. Sie, M. P. Dugan, and S. C. Moss, Direct observations of filaments in the ovonic read-mostly memory, J. Non-Cryst. Solids 8–10, 877–884 (1972).

    Article  Google Scholar 

  141. R. H. Willens, Dendritic crystallization of an amorphous alloy. J. Appl. Phys. 33, 3269–3270 (1962).

    Article  CAS  Google Scholar 

  142. A. Bienenstock, F. Betts, and S. R. Ovshinsky, Structural studies of amorphous semiconductors, J. Non-Cryst. Solids 2, 347–357 (1970).

    Article  CAS  Google Scholar 

  143. T. Takamori, R. Roy, and G. J. McCarthy, Structure of memory-switching glasses, I. Crystallization temperature and its control in Ge-Te glasses, Mat. Res. Bull. 5, 529–540 (1970).

    Article  CAS  Google Scholar 

  144. D. Adler, J. M. Franz, C. R. Hewes, B. P. Kraemer, D. J. Sellmyer, and S. D. Senturia, Transport properties of a memory-type chalcogenide glass, J. NonCryst. Solids 4, 330–337 (1970).

    Article  CAS  Google Scholar 

  145. T. Takamori, R. Roy, and G. J. McCarthy, Observations of surface-nucleated crystallization in memory-switching glasses, J. Appl. Phys. 42, 2577–2578 (1971).

    Article  CAS  Google Scholar 

  146. S. R. Ovshinsky and H. Fritzsche, Reversible structural transformations in amorphous semiconductors for memory and logic, Metallurgical Trans. 2, 641645 (1971).

    Google Scholar 

  147. J. R. Bosnell and C. B. Thomas, Preswitching electrical properties, forming, and switching in amorphous chalcogenide alloy threshold and memory devices, Solid-State Electronics 15, 1261–1271 (1972).

    Article  Google Scholar 

  148. P. Chaudhari and S. R. Herd, Crystallization of certain chalcogenide glasses, J. Non-Cryst. Solids 8–10, 56–63 (1972).

    Article  Google Scholar 

  149. E. J. Evans, Atomic transport in liquid chalcogenide alloys, J. Non-Cryst. Solids 8–10, 702–707 (1972).

    Article  Google Scholar 

  150. S. C. Moss and J. P. deNeufville, Thermal crystallization of selected thin films of Te-based memory glasses, Mat. Res. Bull. 7, 423–442 (1972).

    Article  CAS  Google Scholar 

  151. J. A. Savage, Glass formation and D.S.C. data in the Ge–Te and As–Te memory glass systems, J. Non-Cryst. Solids 11, 121–130 (1972).

    Article  CAS  Google Scholar 

  152. M. H. Cohen, R. G. Neale, and A. Paskin, A model for an amorphous semiconductor memory device, J. Non-Cryst. Solids 8–10, 885–891 (1972).

    Article  Google Scholar 

  153. J. Feinleib, J. deNeufville, S. C. Moss, and S. R. Ovshinsky, Rapid reversible light-induced crystallization of amorphous semiconductors, Appl. Phys. Lett. 18, 254–257 (1971).

    Article  CAS  Google Scholar 

  154. K. Tanaka, Y. Okada, M. Sugi, S. Iizima, and M. Kikuchi, Kinetics of growth of conductive filament in As–Te–Ge glasses, J. Non-Cryst. Solids 12, 100–114 (1973).

    Article  CAS  Google Scholar 

  155. A. D. Pearson, W. R. Northover, J. F. Dewald, and W. F. Peck, Jr., Chemical physical and electrical properties of some unusual inorganic glasses, in Advances in Glass Technology, pp. 357–365, Plenum Press, New York (1962).

    Google Scholar 

  156. A. D. Pearson, The Hall effect—Seebeck effect sign anomaly in semiconducting glasses, J. Electrochem. Soc. 111, 753–755 (1964).

    Article  CAS  Google Scholar 

  157. R. Roy and V. Caslayska, Di-phasic structure of switching and memory device glasses, Solid State Commun. 7, 1467–1473 (1969).

    Article  CAS  Google Scholar 

  158. B. G. Bagley and W. R. Northover, Electron microscopic observations of thermally induced transformations in amorphous chalcogenide thin films, J. Non-Cryst. Solids 2, 161–169 (1970).

    Article  CAS  Google Scholar 

  159. R. G. Brandes, F. P. Laming, and A. D. Pearson, Optically formed dielectric gratings in thick films of arsenic-sulfur glass, Appl. Opt. 9, 1712–1714 (1970).

    Article  CAS  Google Scholar 

  160. A. D. Pearson and B. G. Bagley, The mechanism of hologram formation in arsenic-sulfur glass, Mat. Res. Bull. 6, 1041–1046 (1971).

    Article  CAS  Google Scholar 

  161. S. A. Keneman, Hologram storage in arsenic trisulfide thin films, Appl. Phys. Lett. 19, 205–207 (1971).

    Article  CAS  Google Scholar 

  162. Y. Ohmachi and T. Igo, Laser-induced refractive-index change in As–S–Ge glasses, Appl. Phys. Lett. 20, 506–508 (1972).

    Article  CAS  Google Scholar 

  163. T. Igo and Y. Toyoshima, Optically induced reversible change in amorphous semiconductors, Japan. J. Appl. Phys. 11, 117–118 (1972).

    Article  CAS  Google Scholar 

  164. T. Igo and Y. Toyoshima, A reversible optical change in the As–Se–Ge glass, J. Non-Cryst. Solids 11, 304–308 (1973).

    Article  CAS  Google Scholar 

  165. Y. Asahara and T. Izumitani, Light-induced memory effect in Cu–As–Se glasses, Japan. J. Appl. Phys. 11, 1748 (1972).

    Article  CAS  Google Scholar 

  166. J. S. Berkes, S. W. Ing, Jr., and W. J. Hillegas, Photodecomposition of amorphous As2Se3 and As2S3, J. Appl. Phys. 42, 4908–4916 (1971).

    Article  CAS  Google Scholar 

  167. J. P. deNeufville, S. C. Moss, and S. R. Ovshinsky, Photostructural transformations in amorphous As2Se3 and As2S3 films, J. Non-Cryst. Solids 13 191–223 (1973/74).

    Article  Google Scholar 

  168. J. P. deNeufville, R. Seguin, S. C. Moss, and S. R. Ovshinsky, Mechanism of reversible optical storage in evaporated amorphous AsSe and Ge10As40Se50, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors, Garmisch-Partenkirchen, September 1973 (J. Stuke and W. Brenig, eds.), Vol. 2, 737–743, Taylor and Francis Ltd., London (1974).

    Google Scholar 

  169. J. Feinleib and S. R. Ovshinsky, Reflectivity studies of the Te (Ge,As)-based amorphous semiconductor in the conducting and insulating states, J. Non-Cryst. Solids 4, 564–572 (1970).

    Article  CAS  Google Scholar 

  170. J. Dresner and G. B. Stringfellow, Electronic processes in the photo-crystallization of vitreous selenium, J. Phys. Chem. Solids 29, 303–311 (1968).

    Article  CAS  Google Scholar 

  171. A. Hamada, T. Kurosu, M. Saito, and M. Kikuchi, Transient phenomena of the light-induced memory in amorphous semiconductor films, Appl. Phys. Lett. 20, 9–11 (1972).

    Article  CAS  Google Scholar 

  172. R. J. von Gutfeld and P. Chaudhari, Laser writing and erasing on chalcogenide films, J. Appl. Phys. 43, 4688–4693 (1972).

    Article  Google Scholar 

  173. I. A. Paribok-Aleksandrovich, Photocrystallization of amorphous selenium, Soviet Phys. Solid State 11, 1631 (1970).

    Google Scholar 

  174. K. Weiser, R. J. Gambino, and J. A. Reinhold, Laser-beam writing on amorphous chalcogenide films: crystallization kinetics and analysis of amorphizing energy, Appl. Phys. Lett. 22, 48–49 (1973).

    Article  CAS  Google Scholar 

  175. J. P. deNeufville, Optical information storage, in Proceedings of the Fifth International Conference on Amorphous and Liquid Semiconductors, Garmisch-Partenkirchen, September 1973 (J. Stuke and W. Brenig, eds.), Vol. 2, 1351–1360, Taylor and Francis Ltd., London (1974).

    Google Scholar 

  176. R. J. von Gutfield, The extent of crystallization resulting from submicrosecond optical pulses on Te-based memory materials, Appl. Phys. Lett. 22, 257–258 (1973).

    Article  Google Scholar 

  177. S. R. Ovshinsky and P. H. Klose, Reversible high-speed high-resolution imaging in amorphous semiconductors, in 1971 SID International Symposium Digest of Technical Papers, pp. 58–61, Lewis Winner, New York (1971).

    Google Scholar 

  178. K. S. Kim and D. Turnbull, Crystallization of amorphous selenium films, I. Morphology and kinetics, J. Appl. Phys. 44, 5237–5244 (1973).

    Article  CAS  Google Scholar 

  179. K. S. Kim and D. Turnbull, II. Photo and impurity effects, J. Appl. Phys. 45, 3447–3452 (1974).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1975 Springer Science+Business Media New York

About this chapter

Cite this chapter

Turnbull, D., Bagley, B.G. (1975). Transitions in Viscous Liquids and Glasses. In: Hannay, N.B. (eds) Changes of State. Treatise on Solid State Chemistry, vol 5. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-1120-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1120-2_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-1122-6

  • Online ISBN: 978-1-4757-1120-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics