A Review and Evaluation of Human Genetic Bioassay Data for Some Known or Suspected Human Carcinogens

  • Michael D. Waters
  • Neil E. Garrett
  • Christine M. Covone-de Serres
  • Barry E. Howard
  • H. Frank Stack


The purpose of this paper is to review and to evaluate a subset of the data base described by Waters et al.1 This data subset deals specifically with the application of genetic bioassays utilizing human cells, tissues, and body fluids, to 13 of the 24 known or suspected human carcinogens cited in the larger data base.


Chromosomal Aberration Ethylene Oxide Human Lymphocyte Vinyl Chloride Chromosome Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. D. Waters, N. E. Garrett, C. M. Covone-de Serres, B. E. Howard, and H. F. Stack, 1982, Genetic bioassay data on some known or suspected human carcinogens, in: “The Use of Human Cells for the Assessment of Risk from Physical and Chemical Agents,” A. Castellani, ed., Plenum Press, New York.Google Scholar
  2. 2.
    R. F. Whiting, H. F. Stich, and D. J. Koropatnick, 1979, DNA damage and DNA repair in cultured human cells exposed to chromate, Chem-Biol. Interactions 26: 267.CrossRefGoogle Scholar
  3. 3.
    W. D. MacRae, R. F. Whiting, and H. F. Stich, 1979, Sister chromatid exchanges induced in cultured mammalian cells by chromate, Chem-Biol. Interactions 26: 281.CrossRefGoogle Scholar
  4. 4.
    C. N. Martin, A. C. McDermid, and R. C. Garner, 1978, Testing of known carcinogens and noncarcinogens for their ability to induce unscheduled DNA synthesis in HeLa cells, Cancer Res. 38: 2621.PubMedGoogle Scholar
  5. 5.
    M. Meselson and K. Russell, 1977, Comparisons of carcinogenic and mutagenic potency, in: “Origins of Human Cancer,” H. H. Hiatt, J. D. Watson, and J. A. Winsten, eds., Cold Spring Harbor Conferences on Cell Proliferation, 4: 1473, Cold Spring Harbor Laboratory, New York.Google Scholar
  6. 6.
    R. H. C. San and H. F. Stich, 1975, DNA repair synthesis of cultured human cells as a rapid bioassay for chemical carcinogens, Int. J. Cancer 16 (2): 284.PubMedCrossRefGoogle Scholar
  7. 7.
    H. F. Stich and B. A. Laishes, 1975, The Response of Xeroderma pigmentosum cells and controls to the activated mycotoxins, aflatoxins, and sterigmatocystin, Int. J. Cancer 16 (2): 266.PubMedCrossRefGoogle Scholar
  8. 8.
    R. Lewensohn and U. Ringborg, 1979, Induction of unscheduled DNA synthesis in human bone marrow cells by bifunctional alkylating agents, Blood 54: 1320.PubMedGoogle Scholar
  9. 9.
    M. Nordenskjold, S. Soderhall, and P. Moldeus, 1979, Studies of DNA-strand breaks induced in human fibroblasts by chemical mutagens/carcinogens, Mutation Res. 63: 393.PubMedCrossRefGoogle Scholar
  10. 10.
    R. B. Painter, 1978, DNA synthesis inhibition in HeLa cells as a simple test for agents that damage human DNA, J. Environ. Pathol. Toxicol. 2 (1): 65.PubMedGoogle Scholar
  11. 11.
    R. B. Painter and R. Howard, 1978, A comparison of the HeLa DNA-synthesis inhibition test and the Ames test for screening of mutagenic carcinogens, Mutation Res. 54: 113.PubMedCrossRefGoogle Scholar
  12. 12.
    M. El-Zawahri, A. Moubasher, M. Morad, and I. El-Kady, 1977, Mutagenic effect of aflatoxin B1, Ann. Nutr. Alim. 31: 859.Google Scholar
  13. 13.
    V. E. Thomson and H. J. Evans, 1979, Induction of sister-chromatid exchanges in human lymphocytes and Chinese hamster cells exposed to aflatoxin B1 and N-methyl-Nnitrosourea, Mutation Res. 67: 47.PubMedCrossRefGoogle Scholar
  14. 14.
    F. Zanzoni and E. G. Jung, 1980, Arsenic elevates the sister chromatid exchange (SCE) rate in human lymphocytes in vitro, Arch. Dermatol. Res. 267 (1): 91.PubMedCrossRefGoogle Scholar
  15. 15.
    P. Gerner-Smidt, U. Friedrich, 1978, The mutagenic effect of benzene, toluene and xylene studied by the SCE technique, Mutation Res. 58: 313.PubMedCrossRefGoogle Scholar
  16. 16.
    M. Diaz, N. Fijtman, V. Carricarte, L. Braier and J. Diez, 1979, Effect of benzene and its metabolites on SCE in human lymphocytes cultures, In Vitro 15 (3): 172.Google Scholar
  17. 17.
    K. Morimoto and S. Wolff, 1980, Increase of sister chromatid exchanges and perturbations of cell division kinetics in human lymphocytes by benzene metabolites, Cancer Res. 40 (4): 1189.PubMedGoogle Scholar
  18. 18.
    T. Reposa, 1978, Sister chromatid exchange studies for monitoring DNA damage and repair capacity after cytostatics in vitro and in lymphocytes of leukaemic patients under cytostatic therapy, Mutation Res. 57: 241.CrossRefGoogle Scholar
  19. 19.
    H. W. Rudiger, F. Haenisch, M. Metzler, F. Oesch, and H. R. Glatt, 1979, Metabolites of diethylstilboestrol induce sister chromatid exchange in human cultured fibroblasts, Nature 281: 392.PubMedCrossRefGoogle Scholar
  20. 20.
    A. D. White, 1980, In vitro induction of SCE in human lymphocytes by epichlorohydrin with and without metabolic activation, Mutation Res. 78 (2): 171.PubMedCrossRefGoogle Scholar
  21. 21.
    H. Norppa, K. Hemminki, M. Sorsa, and H. Vainio, 1981, Effect of Monosubstituted epoxides on chromosome aberrations and SCE in cultured human lymphocytes, Mutation Res. 91: 243.PubMedCrossRefGoogle Scholar
  22. 22.
    E. G. Star, 1980, Mutagene and zytotoxische Wirkung von Athylenoxid auf menschliche Zellkulturen, Zbl. Bakt. Hyg. I. Abt. Orig. B170:548.Google Scholar
  23. 23.
    W. Burgdorf, K. Kurvink, and J. Cervenka, 1977, Elevated sister chromatid exchange rate in lymphocytes of subjects treated with arsenic, Hum. Genet. 36: 69.PubMedCrossRefGoogle Scholar
  24. 24.
    V. F. Garry, J. Hozier, D. Jacobs, R. L. Wade, and D. G. Gray, 1979, Ethylene oxide: Evidence of human chromosomal effects. Environ. Mutagenesis 1: 375.CrossRefGoogle Scholar
  25. 25.
    D. G. Stetka and S. Wolff, 1976, Sister chromatid exchange as an assay for genetic damage induced by mutagen-carcinogens. I. In vivo test for compounds requiring metabolic activation. Mutation Res. 41:333.PubMedCrossRefGoogle Scholar
  26. 26.
    B. Lambert, U. Ringborg, A. Lindblad, E. Harper, M. Nordenskjold, and B. Werelius, 1979, Sister-chromatid exchanges in smoking and non-smoking control subjects, patients receiving cancer chemotherapy and laboratory workers exposed to organic solvents, Mutation Res. 64: 138.Google Scholar
  27. 27.
    I-L. Hansteen, 1979, A follow-up study of the PVC workers two years after exposure. Preliminary results using sister chromatid exchange frequency as an assay of genetic damage, in: “Genetic Damage in Man Caused by Environmental Agents,” K. Berg., ed., Academic Press, New York, p. 279.Google Scholar
  28. 28.
    D. Anderson, C. R. Richardson, I. F. H. Purchase, H. J. Evans, and M. L. O’Riordan, 1981, Chromosomal analysis in vinyl chloride exposed workers: comparison of the standard technique with the sister-chromatid exchange technique, Mutation Res. 83: 137.PubMedCrossRefGoogle Scholar
  29. 29.
    I. F. H. Purchase, C. R. Richardson, D. Anderson, G. M. Paddle, and W. G. F. Adams, 1978, Chromosomal analyses in vinyl chloride-exposed workers, Mutation Res. 57: 325.PubMedGoogle Scholar
  30. 30.
    J. J. Oppenheim and W. N. Fishbein, 1965, Induction of chromosome breaks in cultured normal human leukocytes by potassium arsenite, hydroxyurea and related compounds, Cancer Res. 25: 980.PubMedGoogle Scholar
  31. 31.
    K. Nakamuro and Y. Sayato, 1981, Comparative studies of chromosomal aberration induced by trivalent and pentavalent arsenic, Mutation Res. 88 (1): 73.PubMedCrossRefGoogle Scholar
  32. 32.
    A. Koizumi, Y. Dobashi, Y. Tachibana, K. Tsuda, and H. Katsunuma, 1974, Cytokinetic and cytogenetic changes in cultured human leucocytes and HeLa cells induced by benzene, Ind. Health 12: 23.CrossRefGoogle Scholar
  33. 33.
    K. Goh, 1979, Chloramphenicol and chromosomal morphology, J. Med., 10 (3): 159.PubMedGoogle Scholar
  34. 34.
    K. Nakamuro, K. Yoshikawa, Y. Sayato, and H. Kurata, 1978, Comparative studies of chromosomal aberration and mutagenicity of trivalent and hexavalent chromium., Mutation Res. 58: 175.PubMedCrossRefGoogle Scholar
  35. 35.
    A. N. Chebotarev, L. Y. Telegin, and E. M. Derzhavets, 1976, Cytogenetic effect of cyclophosphamide in a culture of human lymphocytes after its activation in the mouse organism, Genetika 12 (11): 151.PubMedGoogle Scholar
  36. 36.
    S. Madle, D. Westphal, V. Hilbig, and G. Obe, 1978, Testing in vitro of an indirect mutagen (cyclophosphamide) with human leukocyte cultures. Activation by liver perfusion and by incubation with crude liver homogenate, Mutation Res. 54: 95.PubMedCrossRefGoogle Scholar
  37. 37.
    M. Morad and M. El-Zawahri, 1977, Non-random distribution of cyclophosphamide-induced chromosome breaks, Mutation Res. 42: 125.PubMedCrossRefGoogle Scholar
  38. 38.
    N. P. Bishun, N. Smith, H. Eddie, and D. C. Williams, 1977, Cytogenetic studies and diethyl stilboestrol, Mutation Res. 46: 211.CrossRefGoogle Scholar
  39. 39.
    R. J. Sram, M. Cerna, and M. Kucerova, 1976, The genetic risk of epichlorohydrin as related to the occupational exposure, Biol. Zbl. 95: 451.Google Scholar
  40. 40.
    M. Kucerovâ and Z. Polivkova, 1976, Banding technique used for the detection of chromosomal aberrations induced by radiation and alkylating agents TEPA and epichlorohydrin, Mutation Res. 34: 279.PubMedCrossRefGoogle Scholar
  41. 41.
    J. Alving, M. R. Jensen, and H. Meyer, 1976, Diphenylhydantoin and chromosome morphology in man and rat: A negative report, Mutation Res. 40: 173.PubMedCrossRefGoogle Scholar
  42. 42.
    F. Muniz, E. Houston, R. Schneider, and M. Nusyowitz, 1969, Chromosomal effects of diphenylhydantoins, Clin. Res. 17: 28.Google Scholar
  43. 43.
    J. Petres, D. Baron, and M. Hagedorn, 1977, Effects of arsenic cell metabolism and cell proliferation: Cytogenetic and biochemical studies, Environ. Health Perspect. 19: 223.PubMedCrossRefGoogle Scholar
  44. 44.
    G. Pollini and R. Colombi, 1964a, Il danno cromosomico midollare nell’anemia aplastic benzolica, Med. Lavoro 55: 241.Google Scholar
  45. 45.
    G. Pollini and R. Colombi, 1964b, Il danno cromosomico dei linfociti nell’emopatia benzenica, Med. Lavoro 55: 641.Google Scholar
  46. 46.
    G. Pollini, E. Stroselli, and R. Colombi, 1964, Sui rapporti fra alterazioni cromosomiche delle cellule emiche e gravita’ dell-emopatia benzenica, Med. Lavoro 55: 735.Google Scholar
  47. 47.
    E. C. Vigliani and G. Saita, 1964, Benzene and leukemia. New England J. Med. 271 (17): 872.CrossRefGoogle Scholar
  48. 48.
    I. M. Tough and W. M. Court Brown, 1965, Chromosome aberrations and exposure to ambient benzene, Lancet 1: 684.PubMedCrossRefGoogle Scholar
  49. 49.
    A. Forni, 1966, Chromosome changes due to chronic exposure to benzene, in: “Proceedings of the 15th International Congress on Occupational Health, Vienna, October 1966,” Wiener Medizinishe Akademie, Vienna, Vol. 2, part 1, pp. 437–439.Google Scholar
  50. 50.
    I. M. Tough, P. G. Smith, W. M. Court Brown, and D. G. Harnden, 1970, Chromosome studies of workers exposed to atmospheric benzene. The possible influence of age, Eur. J. Cancer 6: 49.PubMedGoogle Scholar
  51. 51.
    H. Khan and M. H. Khan, 1973, Cytogenetische untersuchungen bei chronischer benzolexposition, Arch. Toxikol. 31: 39.PubMedCrossRefGoogle Scholar
  52. 52.
    D. Picciano, 1979, Cytogenetic study of workers exposed to benzene, Environ. Res. 19: 33.PubMedCrossRefGoogle Scholar
  53. 53.
    K. Fredga, J. Reitalu, and M. Berlin, 1979, Chromosome studies in workers exposed to benzene, in: “Genetic Damage in Man Caused by Environmental Agents,” K. Berg, ed., Academic Press, New York, p. 187.Google Scholar
  54. 54.
    M. Dobos, D. Schuler, and G. Fekete, 1974, Cyclophosphamideinduced chromosomal aberrations in nontumorous patients, Humangenetik 22: 221.Google Scholar
  55. 55.
    F. E. Arrighi, T. C. Hsu, and D. E. Bergsagel, 1962, Chromosome damage in murine and human cells following cytoxan therapy, Tex. Rep. Biol. Med. 20: 545.Google Scholar
  56. 56.
    E. Schmid and M. Bauchinger, 1968, Chromosomenaberrationen in menschlichen peripheren lymphozyten nach endoxanstosstherapie gynakologischer tumoren, Deutsche Medizinische Wochenschrift 93 (23): 1149.PubMedCrossRefGoogle Scholar
  57. 57.
    M. Bauchinger and E. Schmid, 1969, Cytogenetische veranderungen in weissen blutzellen nach cyclophosphamidtherapie, Z. Krebsforsch. 72: 77.PubMedCrossRefGoogle Scholar
  58. 58.
    E. Schmid and M. Bauchinger, 1973, Comparison of the chromosome damage induced by radiation and cytoxan therapy in lymphocytes of patients with gynaecological tumours, Mutation Res. 21: 271.PubMedCrossRefGoogle Scholar
  59. 59.
    M. Kucerova, V. S. Zhurkov, Z. Polivkova, and J. E. Ivanova, 1977, Mutagenic effect of epichlorohydrin. II. Analysis of chromosomal aberrations in lymphocytes of persons occupationally exposed to epichlorohydrin. Mutation Res. 48: 355.PubMedCrossRefGoogle Scholar
  60. 60.
    M. Kucerova, Z. Polivkova, R. Sram, and V. Matousek, 1976, Mutagenic effect of epichlorohydrin I. Testing on human lymphocytes in vitro in comparison with TEPA, Mutation Res. 34: 271.PubMedCrossRefGoogle Scholar
  61. 61.
    I. F. H. Purchase, C. R. Richardson, and D. Anderson, 1975, Chromosomal and dominant lethal effects of vinyl chloride, Lancet 2: 410.PubMedCrossRefGoogle Scholar
  62. 62.
    I. F. H. Purchase, C. R. Richardson, and D. Anderson, 1976, Chromosomal effects in peripheral lymphocytes, Proc. Roy. Soc. Med. 69: 290.PubMedGoogle Scholar
  63. 63.
    F. Fanes-Cravioto, B. Lambert, J. Lindsten, L. Ehrenberg, A. T. Natarajan, and S. Osterman-Golkar, 1975, Chromosome aberrations in workers exposed to vinyl chloride, Lancet 1: 459.CrossRefGoogle Scholar
  64. 64.
    A. Ducatman, K. Hirschhorn, I. J. Selikoff, 1975, Vinyl chloride exposure and human chromosome aberrations, Mutation Res. 31: 163.PubMedCrossRefGoogle Scholar
  65. 65.
    A. Leonard, G. Decat, E. D. Leonard, M. J. Lefevre, L. J. Decuyper, and C. Nicaise, 1977, Cytogenetic investigations on lymphocytes from workers exposed to vinyl chloride, J. Toxicol. Environ. Health 2 (5): 1135.PubMedCrossRefGoogle Scholar
  66. 66.
    D. J. Picciano, R. E. Flake, P. C. Gay, and D. J. Kilian, 1977, Vinyl chloride cytogenetics, J. Occup. Med. 19 (8): 527.PubMedGoogle Scholar
  67. 67.
    A. W. Barnes, 1976, Vinyl chloride and the production of PVC, Proc. Roy. Soc. Med. 69: 277.PubMedGoogle Scholar
  68. 68.
    I-L. Hansteen, L. Hillestad, E. Thiis-Evensen, and S. S. Heldaas, 1978, Effects of vinyl chloride in man: A cytogenetic follow-up study, Mutation Res. 51 (2): 271.PubMedCrossRefGoogle Scholar
  69. 69.
    I-L. Hansteen, 1978, Acute exposure to VCM: A cytogenetic study of two workers, Mutation Res. 53: 196.Google Scholar
  70. 70.
    V. Minnich, M. E. Smith, D. Thompson, and S. Kornfeld, 1976, Detection of mutagenic activity in human urine using mutant strains of Salmonella typhimurium, Cancer 38: 1253.PubMedCrossRefGoogle Scholar
  71. 71.
    D. Siebert and U. Simon, 1973, Genetic activity of metabolites in the ascitic fluid and in the urine of a human patient treated with cyclophosphamide: Induction of mitotic gene conversion in Saccharomyces cerevisiae, Mutation Res. 21: 257.PubMedCrossRefGoogle Scholar
  72. 72.
    I. E. Mattern and W. B. van der Zwaan, 1977, Mutagenicity testing of urine from vinylchloride (VCM) treated rats using the Salmonella test system, Mutation Res. 46: 230.Google Scholar
  73. 73.
    D. J. Kilian, T. G. Pullin, T. H. Connor, M. S. Legator, and H. N. Edwards, 1978, Mutagenicity of epichlorohydrin in the bacterial assay system: Evaluation by direct in vitro activity and in vivo activity of urine from exposed humans and mice, Mutation Res. 53: 72.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • Michael D. Waters
    • 1
  • Neil E. Garrett
    • 2
  • Christine M. Covone-de Serres
    • 3
  • Barry E. Howard
    • 1
  • H. Frank Stack
    • 2
  1. 1.Genetic Toxicology Division, Health Effects Research LaboratoryU.S. Environmental Protection AgencyResearch Triangle ParkUSA
  2. 2.Environmental SciencesNorthrop Services, Inc.Research Triangle ParkUSA
  3. 3.Genetics CurriculumUniversity of North CarolinaChapel HillUSA

Personalised recommendations