Parvoviral Probe of DNA Replication in Mammalian Cells Exposed to Genotoxic Agents

  • J. Rommelaere
  • J.-M. Vos
  • D. C. Ward


Exposure of mammalian cells to a variety of chemical and physical agents depresses the overal rate of DNA synthesis [1]. Part of this inhibition can be ascribed to a disturbance of the initiation of cell DNA replication. The cellular genome comprises numerous units which contain each one replication origin and are replicated sequentially. Genotoxic agents, in particular direct or indirect inducers of DNA breaks, apparently delay the initiation of the replication of units normally programmed for a time subsequent to the treatment of the cells [2]. Single-strand breaks might lead to the loss of chromosomal segments if not sealed at the time of replication. The temporary inhibition of the initiation of DNA replication lowers this risk by providing cells with more time for DNA repair. The lack of a delay in DNA replication displayed by human cells derived from Ataxia telangiectasia patients is associated with an increased sensitivity to the lethal effect of the treatment [3].


Replicative Form Pretreated Cell Virus Survival Daughter Strand Viral Strand 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. D. Hall and D. W. Mount, Mechanism of DNA replication and mutagenesis in ultraviolet-irradiated bacteria and mammalian cells, Prog. Nucl. Acid Res. and Mol. Biol., 25: 53 (1981).CrossRefGoogle Scholar
  2. 2.
    R. B. Painter, Effect of caffeine on DNA synthesis in irradiated and unirradiated mammalian cells, J. Mol. Biol., 143: 289 (1980).PubMedCrossRefGoogle Scholar
  3. 3.
    M. D. Ford and M. F. Lavin, Ataxia telangiectasia: an anomaly in DNA replication after irradiation, Nucleic Acids Res., 9: 1395 (1981).PubMedCrossRefGoogle Scholar
  4. 4.
    P. D. Moore, K. K. Bose, S. D. Rabdkin, and B. S. Strauss, Sites of termination of in vitro DNA synthesis on ultraviolet-and N-acetylaminofluorene-treated X174 templates by prokaryotic and eukaryotic DNA polymerases, Proc. Natl. Acad. Sci. USA, 78: 110 (1981).PubMedCrossRefGoogle Scholar
  5. 5.
    A. R. Lehmann, The relationship between pyrimidine dimers and replicating DNA in UV-irradiated human fibroblasts, Nucleic Acids Res., 7: 1901 (1979).PubMedCrossRefGoogle Scholar
  6. 6.
    J. E. Cleaver, G. H. Thomas, and S. D. Park, Xeroderma pigmentosum variants have a slow recovery of DNA synthesis after irradiation with ultraviolet light, Biochim. Biophys. Acta, 564: 122 (1979).CrossRefGoogle Scholar
  7. 7.
    B. S. Rosenstein and R. B. Setlow, DNA repair after ultraviolet irradiation of ICR 2A frog cells, Biophys. J., 31: 195 (1980).Google Scholar
  8. 8.
    H. J. Edenberg, Inhibition of DNA replication by ultraviolet light, Biophys. J., 16: 849 (1976).Google Scholar
  9. 9.
    D. Dahle, T. D. Griffiths, and J. G. Carpenter, Inhibition and recovery of DNA synthesis in UV-irradiated Chinese hamster V-79 cells, Photochem. Photobiol., 32: 157 (1980).CrossRefGoogle Scholar
  10. 10.
    A. R. Lehmann, Postreplication repair of DNA in ultraviolet-irradiated mammalian cells, J. Mol. Biol., 66: 319 (1972).PubMedCrossRefGoogle Scholar
  11. 11.
    S. N. Buhl, R. B. Setlow, and J. D. Regan, Steps in DNA chain elongation and joining after ultraviolet-irradiation of human cells, Int. J. Radiat. Biol., 22: 417 (1972).CrossRefGoogle Scholar
  12. 12.
    J. Doniger, DNA replication in ultraviolet light irradiated Chinese hamster cells: nature of replicon inhibition and post-replication repair, J. Mol. Biol., 120: 433 (1978).PubMedCrossRefGoogle Scholar
  13. 13.
    R. Meneghini, M. Cordeiro-Stone, and R. I. Schumacher, Size and frequency of gaps in newly synthesized DNA of Xeroderma pigmentosum human cells irradiated with ultraviolet light, Biophys. J., 33: 81 (1981).Google Scholar
  14. 14.
    S. N. Buhl, R. B. Setlow, and J. D. Regan, Recovery of the ability to synthesize DNA in segments of normal size at long times after ultraviolet irradiation of human cells, Biophys. J., 13: 1265 (1973).Google Scholar
  15. 15.
    J. E. Cleaver, Investigations into the effects of UV-light on the rate of deoxyribonucleic acid synthesis in mammalian cells, Biochim. Biophys. Acta, 108: 42 (1965).CrossRefGoogle Scholar
  16. 16.
    R. E. Meyn, M. R. Kasschan, and R. R. Hewitt, The recovery of normal DNA replication kinetics in UV-irradiated Chinese hamster cells, Mutation Res., 44: 129 (1977).PubMedCrossRefGoogle Scholar
  17. 17.
    S. D. Park and J. E. Cleaver, Recovery of DNA synthesis after ultraviolet irradiation of Xeroderma pigmentosum cells depends on excision repair and is blocked by caffeine, Nucleic Acids Res., 6: 1151 (1979).PubMedCrossRefGoogle Scholar
  18. 18.
    J. Doniger and. J. A. DiPaolo, The early and late modes of DNA replication in ultraviolet irradiated Syrian hamster embryo cells, Biophys. J., 31: 247 (1980).PubMedCrossRefGoogle Scholar
  19. 19.
    J. I. Williams and J. E. Cleaver, Perturbations in Simian virus 40 DNA synthesis by ultraviolet light, Mutation Res., 52: 301 (1978).PubMedCrossRefGoogle Scholar
  20. 20.
    A. R. Sarasin and P. C. Hanawalt, Replication of ultraviolet-irradiated Simian virus 40 in monkey kidney cells, J. Mol. Biol., 138: 299 (1980).PubMedCrossRefGoogle Scholar
  21. 21.
    R. Meneghini and P. C. Hanawalt, T4-endonuclease V-sensitive sites in DNA from ultraviolet-irradiated human cells, Biochim. Biophys. Acta, 425: 428 (1976).CrossRefGoogle Scholar
  22. 22.
    M. Cordeiro-Stone, R. I. Schumacher, and R. Meneghini, Structure of the replication fork in ultraviolet light-irradiated human cells, Biophys. J., 27: 287 (1979).PubMedCrossRefGoogle Scholar
  23. 23.
    P. Tattersall and D. C. Ward, the parvoviruses: an introduction, in: “Replication of Mammalian Parvoviruses,” D. C. Ward and P. Tattersall, eds., p. 3, Cold Spring Harbor Laboratory, New York (1978).Google Scholar
  24. 24.
    P. Tattersall and D. C. Ward, Rolling hairpin model for replication of parvovirus and linear chromosomal DNA, Nature, 263: 106 (1976).PubMedCrossRefGoogle Scholar
  25. 25.
    D. C. Ward and D. K. Dadachanji, Replication of minute-virusof-mice DNA, in: “Replication of Mammalian Parvoviruses,” D. C. Ward and P. Tattersall, eds., p. 297, Cold Spring Harbor Laboratory, New York (1978).Google Scholar
  26. 26.
    S. L. Rhode, H-1 DNA synthesis, in: “Replication of Mammalian Parvoviruses,” D. C. Ward and P. Tattersall, eds., p. 279, Cold Spring Harbor Laboratory, New York (1978).Google Scholar
  27. 27.
    P. Caillet-Fauquet, M. Defais, and M. Redman, Molecular mechanism of induced mutagenesis: replication in vivo of bacteriophage 474 single-stranded ultraviolet light-irradiated DNA in intact and irradiated host cells, J. Mol. Biol., 117: 95 (1977).PubMedCrossRefGoogle Scholar
  28. 28.
    R. M. Schaaper and L. A. Loeb, Depurination causes mutations in SOS-induced cells, Proc. Natl. Acad. Sci. USA, 78: 1773 (1981).PubMedCrossRefGoogle Scholar
  29. 29.
    S. M. D’Ambrosio, P. M. Aebersold, and R. B. Setlow, Enhancement of postreplication repair in ultraviolet light-irradiated Chinese hamster cells by irradiation in G2 or S-phase, Cancer Res., 38: 1147 (1978).PubMedGoogle Scholar
  30. 30.
    R. B. Painter, Response of Chinese hamster ovary cells to DNA damages after a conditioning exposure to ultraviolet light, Biochim. Biophys. Acta., 609: 257 (1980).CrossRefGoogle Scholar
  31. 31.
    E. Moustacchi, U. K. Ehmann, and E. C. Friedberg, Defective recovery of semi-conservative DNA synthesis in Xeroderma pigmentosum cells following split-dose ultraviolet irradiation, Mutation Res., 62: 159 (1979).PubMedCrossRefGoogle Scholar
  32. 32.
    R. Waters, The repair of human DNA following fractionated doses of ultraviolet irradiation, Carcinogenesis, 1: 9 (1980).PubMedCrossRefGoogle Scholar
  33. 33.
    C. D. Lytle, Radiation-enhanced virus reactivation in mammalian cells, J. Natl. Cancer Inst. Monogr., 50: 145 (1978).Google Scholar
  34. 34.
    M. Redman, Is there SOS induction in mammalian cells?, Photochem. Photobiol., 32: 823 (1980).CrossRefGoogle Scholar
  35. 35.
    L. E. Bockstahler, Induction of enhanced reactivation of mammalian viruses by light, Prog. Nucl. Acid Res. and Mol. Biol., 26: 303 (1981).CrossRefGoogle Scholar
  36. 36.
    M. J. Defais, P. C. Hanawalt, and A. R. Sarasin, Viral probes for DNA repair, Adv. in Radiat. Biol., l0:in press (1981).Google Scholar
  37. 37.
    J. J. Weigle, Induction of mutations in a bacterial virus, Proc. Natl. Acad. Sci. USA, 39: 628 (1953).PubMedCrossRefGoogle Scholar
  38. 38.
    M. Radman, SOS repair hypothesis: phenomenology of an inducible DNA repair which is accompanied by mutagenesis, in: “Molecular Mechanisms for Repair of DNA,” P. C. Hanawalt and R. B. Setlow, eds., p. 355, Plenum Press, New York (1975).CrossRefGoogle Scholar
  39. 39.
    E. M. Witkin, Ultraviolet mutagenesis and inducible DNA repair in Escherichia coli, Bacteriol. Rev., 40: 869 (1976).Google Scholar
  40. 40.
    C. D. Lytle, J. G. Goddard, and Chen-ho Lin, Repair and muta-genesis of herpes simplex virus in UV-irradiated monkey cells, Mutation Res., 70: 139 (1980).PubMedCrossRefGoogle Scholar
  41. 41.
    J. Rommelaere, J.-M. Vos, J. J. Cornelis, and D. C. Ward, UV-enhanced reactivation of minute-virus-of-mice: stimulation of a late step in the viral life cycle, Photochem. Photobiol., 33: 845 (1981).CrossRefGoogle Scholar
  42. 42.
    W. P. Jeeves and A. J. Rainbow, Gamma-Ray-enhanced reactivation of UV-irradiated adenovirus in normal human fibroblasts, Mutation Res., 60: 33 (1979).PubMedCrossRefGoogle Scholar
  43. 43.
    Luo Zu Yu, J. J. Cornelis, J.-M. Vos, and J. Rommelaere, UV-enhanced reactivation of capsid protein synthesis and infectious center formation in mouse cells infected with UV-irradiated minute-virus-of-mice, Int. J. Radiat. Biol., in press (1981).Google Scholar
  44. 44.
    J.-M. Vos, J. J. Cornelis, S. Limbosch, F. Zampetti-Bosseler, and J. Rommelaere, UV-iradiation of related mouse hybrid cells: similar increase in capacity to replicate minute-virus-of-mice but differential enhancement of survival of UV-irradiated virus, Mutation Res., in press (1981).Google Scholar
  45. 45.
    P. Tattersall, Replication of the parvovirus MVM, J. Virol., 10: 586 (1972).PubMedGoogle Scholar
  46. 46.
    J. W. Littlefield, Three degrees of guanylic acid-inosinic acid pyrophosphorylase deficiency in mouse fibroblasts, Nature, 203: 1142 (1964).PubMedCrossRefGoogle Scholar
  47. 47.
    J. Rommelaere and D. C. Ward, Effect of virus and cell UV-irradiation on parvovirus minute-virus-of-mice DNA replication in mouse fibroblasts, in preparation (1981).Google Scholar
  48. 48.
    P. Tattersall, L. V. Crawford, and A. J. Shatkin, Replication of the parvovirus MVM, J. Virol., 12: 1446 (1973).PubMedGoogle Scholar
  49. 49.
    E. M. Southern, Detection of specific sequences among DNA fragments separated by gel electrophoresis, J. Mol. Biol., 98: 503 (1975).PubMedCrossRefGoogle Scholar
  50. 50.
    G. J. Bourguignon, P. J. Tattersall, and D. C. Ward, DNA of minute-virus-of-mice: self-priming, non permuted, single-stranded genome with a 5’-terminal hairpin duplex, J. Virol., 20: 290 (1976).PubMedGoogle Scholar
  51. 51.
    M. Gunther, R. Wicker, S. Tiravy, and J. Coppey, Enhanced survival of ultraviolet-damaged parvovirus Lu III and herpes virus in carcinogen pretreated transformed human cells, in: “Chromosome Damage and Repair,” E. Seeberg, ed., Plenum Press, New York (1980).Google Scholar
  52. 52.
    Zao Zhong Su, J. J. Cornelis, and J. Rommelaere, Mutagenesis of intact parvovirus H-1 is expressed co-ordinately with enhanced reactivation of ultraviolet irradiated virus in human and rat cells treated with 2-nitronaphthofurans, Carcinogenesis, 10:in press (1981).Google Scholar
  53. 53.
    A. R. Sarasin and P. C. Hanawalt, Carcinogens enhance survival of UV-irradiated Simian virus 40 in treated monkey kidney cells: induction of a recovery pathway ? Proc. Natl. Acad. Sci. USA, 75: 346 (1978).PubMedCrossRefGoogle Scholar
  54. 54.
    U. Das Gupta and W. C. Summers, Ultraviolet reactivation of herpes simplex virus is mutagenic and inducible in mammalian cells, Proc. Natl. Acad. Sci. USA, 75: 2378 (1978).CrossRefGoogle Scholar
  55. 55.
    C. D. Lytle and J. G. Goddard, UV-enhanced virus reactivation in mammalian cells: effects of metabolic inhibitors, Photochem. Photobiol., 29: 959 (1979).CrossRefGoogle Scholar
  56. 56.
    P. Linser, H. Bruning, and R. W. Armentrout, Uptake of minutevirus-of-mice into cultured rodent cells, J. Virol., 31: 537 (1979).PubMedGoogle Scholar
  57. 57.
    D. Revie, B. Y. Tseng, R. H. Grafstrom, and M. Goulian, Covalent association of protein with replicative form DNA of parvovirus H-1, Proc. Natl. Acad. Sci. USA, 76: 5539 (1979).CrossRefGoogle Scholar
  58. 58.
    W. R. Proctor, J. S. Cook, and R. W. Tennant, Ultraviolet photobiology of Kilham rat virus and the absolute ultraviolet photosensitivities of other animal viruses: influence of DNA strandedness, molecular weight and host-cell repair, Virology, 49: 368 (1972).PubMedCrossRefGoogle Scholar
  59. 59.
    E. A. Faust and D. C. Ward, Incomplete genomes of the parvovirus minute-virus-of-mice (MVM): selective conservation of the genome termini, including the origin for DNA replication, J. Virol., 32: 276 (1979).PubMedGoogle Scholar
  60. 60.
    P. Todd, H. Dalen, and C. B. Schroy, Survival of synchronized cultured human liver cells following single and fractionated exposures to ultraviolet light, Radiat. Res., 69: 573 (1977).Google Scholar
  61. 61.
    J. Rommelaere and A. Miller-Faurês, Detection by density equilibrium centrifugation of recombinant-like DNA molecules in somatic mammalian cells, J. Mol. Biol., 98: 195 (1975).PubMedCrossRefGoogle Scholar
  62. 62.
    A. R. Lehmann and S. Kirk-Bell, Pyrimidine dimer sites associated with the daughter DNA strands in UV-irradiated human fibroblasts, Photochem. Photobiol., 27: 297 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. Rommelaere
    • 2
  • J.-M. Vos
    • 1
  • D. C. Ward
    • 2
  1. 1.Department of Molecular BiologyUniversité Libre de BruxellesRhode Saint GenèseBelgium
  2. 2.Yale University School of MedicineNew HavenUSA

Personalised recommendations