Transfer and Detection of Proteins on Membrane Supports

  • Ian M. Rosenberg

Abstract

Electrotransferring proteins from a gel to a membrane, known as Western blotting, combines the resolution capabilities of electrophoretic protein separation with the specificity of immunological identification in a rapid and highly sensitive format. For optimal results, the macromolecules must be transferred efficiently from the gel to the membrane. The proteins which are now immobilized on the membrane can be identified and visualized by using specific and sensitive immunobiochemical detection techniques.

Keywords

Nitro Blue Tetrazolium Transfer Buffer Galanthus Nivalis Agglutinin Dolichos Biflorus Agglutinin Tween Tris Buffer Saline 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bonner WM, Laskey RA (1974): A film detection method for tritium labeled proteins and nucleic acids in polyacrylamide gels. Eur J Biochem 46: 83–88CrossRefGoogle Scholar
  2. Boren T, Falk P, Roth KA, Larson G, Normark S (1993): Attachment of Helicobacter pylori to human gastric epithelium mediated by blood group antigens. Science 262: 1892–1895CrossRefGoogle Scholar
  3. Burridge K (1978): Direct identification of specific glycoproteins and antigens in sodium dodecyl sulfate gels. Methods Enzymo150:54–64Google Scholar
  4. Dooley S. Welter C, Blin N (1992): Nonradioactive Southwestern analysis using chemiluminescent detection. Bio Techniques 13: 540–543Google Scholar
  5. Ervasti JM, Campbell KP (1993): A role for the dystrophin-glycoprotein complex as a transmembrane linker between laminin and actin. J Cell Biol 122: 809–823CrossRefGoogle Scholar
  6. Falk P, Roth KA, Boren T, Westblom TU, Gordon JI, Normark S (1993): An in vitro adherence assay reveals that Helicobacter pylori exhibits cell lineage-specific tropism in the gastric epithelium. Proc Nail Acad Sci USA 90: 2035–2039CrossRefGoogle Scholar
  7. Fernandez-Pol JA (1982): Immunoautoradiographic detection of epidermal growth factor receptors after electrophoretic transfer from gels to diazo-paper. FEBS Lett 143: 86–92CrossRefGoogle Scholar
  8. Flanagan SD, Yost B (1984): Calmodulin-binding proteins: Visualization by 125I-calmodulin overlay on blots quenched with Tween 20 or bovine serum albumin and poly(ethylene oxide). Anal Biochem 140: 510–519CrossRefGoogle Scholar
  9. Gershoni JM (1988): Protein blotting: a manual. Methods Biochem Anal 33: 1–58CrossRefGoogle Scholar
  10. Gershoni JM, Palade GE (1983): Protein blotting: principles and applications. Anal Biochem 131: 1–15Google Scholar
  11. Gershoni JM, Hawrot E, Lentz TL (1983): Binding of alpha-bungarotoxin to isolated alpha subunit of the acetylcholine receptor of Torpedo californica: Quantitative analysis with protein blots. Proc Natl Acad Sci USA 80: 4973–4977CrossRefGoogle Scholar
  12. Geysen J, DeLoof A. Vandesande F (1984): How to perform subsequent or “double” immunostaining of two different antigens on a single nitrocellulose blot within one day with an immunoperoxidase technique. Electrophoresis 15: 129–131CrossRefGoogle Scholar
  13. Hames BD, Rickwood D (1981): Gel Electrophoresis of Proteins: A Practical Approach. Oxford: IRL PressGoogle Scholar
  14. Hancock K, Tsang VCW (1983): India ink staining of proteins on nitrocellulose paper. Anal Biochem 133: 157–162CrossRefGoogle Scholar
  15. Hawkes R, Niday E. Gordon J (1982): A dot-immunobinding assay for monoclonal and other antibodies. Anal Biochem 119: 142–147CrossRefGoogle Scholar
  16. Hayman EG, Pierschbacher MD, Ohgren Y, Ruoslahti E (1983): Serum spreading factor (vitronectin) is present at the cell surface and in tissues. Proc Nat! Acad Sci USA 80: 4003–4007CrossRefGoogle Scholar
  17. Ibraghimov-Beskrovnaya O, Ervasti JM, Leveille CJ, Slaughter CA, Sernett SW, Campbell KP (1992): Primary structure of dystrophin-associated glycoproteins linking dystrophin to the extracellular matrix. Nature 355: 696–702CrossRefGoogle Scholar
  18. Laskey RA (1980): The use of intensifying screens or organic scintillators for visualizing radioactive molecules resolved by gel electrophoresis. Methods Enzymol 65: 363–371CrossRefGoogle Scholar
  19. Lis H, Sharon N (1984): Lectins: properties and applications to the study of complex carbohydrates in solution and on cell surfaces. In: Biology of Carbohydrates, Vol. 2, Ginsburg V, Robbins PW, eds. New York: John WileyGoogle Scholar
  20. Montelaro R (1987): Protein antigen purification by preparative protein blotting. Electrophoresis 8: 432–438CrossRefGoogle Scholar
  21. Parekh BS, Mehta HB, West MD, Montelaro RC (1985): Preparative elution of proteins from nitrocellulose membranes after separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis. Ana! Biochem 148: 87–92CrossRefGoogle Scholar
  22. Peranen J (1992): Rapid affinity-purification and biotinylation of antibodies. Bio Techniques 13: 546–549Google Scholar
  23. Roche PC, Ryan RJ (1989): Purification, characterization and amino-terminal sequence of rat ovarian receptor for luteinizing hormone/human choriogonadotropin. J Bio! Chem 264: 4636–4641Google Scholar
  24. Sheng S, Schuster SM (1992): Simple modifications of a protein immunoblotting protocol to reduce nonspecific background. Bio Techniques 13: 704–708Google Scholar
  25. Shibuya N, Goldstein IJ, Broekaert WF, Nsimba-Lubaki M, Peeters B. Peumans WJ (1987): The Elderberry (Sambucus nigra L.) bark lectin recognizes the Neu5Ac(a2–6)Gal/Ga1NAc sequence. J Biol Chem 262: 1596–1601Google Scholar
  26. Simpson RJ, Ward LD, Reid GE, Batterham MP, Moritz R (1989): Peptide-mapping and internal sequencing of proteins electroblotted from two-dimensional gels onto polyvinylidene difluoride membranes—a chromatographic procedure for separating proteins from detergents. J Chromatogr 476: 345–361CrossRefGoogle Scholar
  27. Soutar AK, Wade DP (1989): Ligand blotting. In: Protein Function: A Practical Approach, Creighton TE, ed. Oxford: Oxford University Press.Google Scholar
  28. Stromquist M, Gruffman H (1992): Periodic acid/Schiff staining of glycoproteins immobilized on a blotting matrix. Bio Techniques 13: 744–749Google Scholar
  29. Thompson D, Larson G (1992): Western blots using stained protein gels. BioTechniques 12: 656–658Google Scholar
  30. Towbin J, Staehelin T. Gordon J (1979): Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Nat! Acad Sci USA 76: 4350–4354CrossRefGoogle Scholar
  31. Wang W, Cummings RD (1988): The immobilized leukoagglutinin from the seeds of Maakia amurensis binds with high affinity to complex-type Asn-linked oligosaccharides containing terminal sialic acid-linked a-2,3 to penultimate galactose residues. J Bio! Chem 263: 4576–4585Google Scholar
  32. Wilson PT, Gershoni JM, Hawrot E, Lentz TL (1984): Binding of alpha-bungarotoxin to proteolytic fragments of the alpha-subunit of Torpedo acetylcholine receptor analyzed by protein transfer on positively charged membrane filters. Proc Nat! Acad Sci USA 81: 2553–2557CrossRefGoogle Scholar
  33. Wordinger R, Miller G. Nicodemus D (1983): Manual of Immunoperoxidase Techniques. Chicago: American Society of Clinical Pathologists PressGoogle Scholar
  34. Yuen S, Chui A, Wilson K. Yuan P (1989): Microanalysis of SDS-PAGE electroblotted proteins. Bio Techniques 7: 74–83Google Scholar
  35. Zacharius RM, Zell TE, Morrison JH, Woodlock JJ (1969): Glycoprotein staining following electrophoresis on acrylamide gels. Anal Biochem 30: 148–152CrossRefGoogle Scholar

General References

  1. Cummings RD (1994): Use of lectins in analysis of glycoconjugates. Methods Enzymol 230: 66–86CrossRefGoogle Scholar
  2. Harlow E, Lane D (1988): Antibodies: A Laboratory Manual. Cold Spring Harbor, New York: Cold Spring Harbor LaboratoryGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Ian M. Rosenberg
    • 1
  1. 1.Massachusetts General HospitalBostonUSA

Personalised recommendations