Picard’s Theorem

  • Raghavan Narasimhan


In this chapter, we shall prove the so-called “big” theorem of Picard which asserts that a holomorphic function with an (isolated) essential singularity assumes every value with at most one exception in any neighborhood of that singularity.


Compact Subset Essential Singularity Compact Complex Manifold Nevanlinna Theory Schwarz Lemma 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References : Chapter 4

  1. [1]
    Ahlfors, L.V.: An extension of Schwarz’s lemma. Trans. Amer. Math. Soc. 43 (1938), 359–364.MathSciNetGoogle Scholar
  2. [2]
    Bloch, A.: Les théorèmes de M. Valiron sur les fonctions entières, et la théorie de l’uniformisation. Ann. Fac. des Sciences, Univ. de Toulous. 17 (1925), 1–22.MathSciNetCrossRefGoogle Scholar
  3. [2]
    Bloch, A.: See also a short version, with the same title, in C. R. Acad. Sci. Pari. 178 (1924), 2051–2052.zbMATHGoogle Scholar
  4. [3]
    Borel, E.: Sur les zéros des fonctions entières. Acta Math. 20 (1897), 357–396.MathSciNetzbMATHCrossRefGoogle Scholar
  5. [4]
    Conway, J. B. : Functions of one complex variable. Springer, 1973.zbMATHCrossRefGoogle Scholar
  6. [5]
    Copson, E. T. : An introduction to the theory of functions of a complex variabl., Oxford University Press, 1935 (and later reprints).Google Scholar
  7. [6]
    Grauert, H. and H. Reckziegel : Hermitische Metriken und normale Familien holomorpher Abbildungen. Math. Zeit. 89 (1965), 108–125.MathSciNetzbMATHCrossRefGoogle Scholar
  8. [7]
    Griffiths, P. A. : Entire holomorphic mappings in one and several variables. Annals of Math. Studies, Princeton, 1976.zbMATHGoogle Scholar
  9. [8]
    Heins, M.: Complex functions theory. New York: Academic Press, 1968.Google Scholar
  10. [9]
    Hurwitz, A. and R. Courant : Funktionentheorie. 4th ed. with an appendix by H. Röhrl, Springer, 1964.zbMATHGoogle Scholar
  11. [10]
    Kodaira, K.: Holomorphic mappings of polydiscs into compact complex manifolds. J. Diff. Geometr. 6 (1971), 33–46.MathSciNetzbMATHGoogle Scholar
  12. [11]
    Landau, E.: Darstellung und Begründung einiger neuerer Ergebnisse der Funktionentheori., 2nd ed. Springer, 1929 (Chelsea reprint, 1946).zbMATHGoogle Scholar
  13. [12]
    Montel, P.: Leçons sur les familles normales de fonctions analytiques. Paris, 1927.zbMATHGoogle Scholar
  14. [13]
    Nevanlinna, R.: Le théorème de Picard-Borel et la théorie des functions méromorphes. Paris, 1929.Google Scholar
  15. [14]
    Nevanlinna, R.: Eindeutige analytische Funktionen. Springer, 1936 (English translation : Analytic Function., Springer, 1970.)Google Scholar
  16. [15]
    Valiron, G.: Sur les théorèmes de Mm. Bloch, Landau, Montel et Schottky. C. R. Acad. Sci. Pari., 183 (1926), 728–730.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1985

Authors and Affiliations

  • Raghavan Narasimhan
    • 1
  1. 1.Department of MathematicsThe University of ChicagoChicagoUSA

Personalised recommendations