Skip to main content

Subharmonic Functions and the Dirichlet Problem

  • Chapter
Complex Analysis in one Variable
  • 573 Accesses

Abstract

In this chapter, we introduce, and study, subharmonic functions and use them to solve the Dirichlet problem for harmonic functions (on reasonable domains). We shall indicate some other applications of these functions at the end of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlfors, L. V.: Complex analysis. 3rd ed. New York: McGraw-Hill, 1979.

    MATH  Google Scholar 

  2. Ahlfors, L. V. and L. Sario. Riemann surfaces, Princeton, 1960.

    MATH  Google Scholar 

  3. Bouligand, G.: Sur le problème de Dirichlet. Ann. Scient. Soc. Polonaise 4 (1926), 59–112.

    MATH  Google Scholar 

  4. Brelot, M.: Familles de Perron et problème de Dirichlet. Acta Scient. Math. Szeged 9 (1939), 133–153.

    MathSciNet  Google Scholar 

  5. Cartan, H.: Sur une extension d’un théorème de Radó. Math. Annalen 125 (1952), 49–50.

    Article  MathSciNet  MATH  Google Scholar 

  6. Chandrasekharan, K.: Arithmetical functions. Springer, 1970.

    Book  MATH  Google Scholar 

  7. Delsarte, J.: Note sur une propriété nouvelle des fonctions harmoniques. C. R. Acad, Sci. Paris 246 (1958), 1358–1360.

    MathSciNet  MATH  Google Scholar 

  8. Evans, G. C.: On potentials of positive mass, Trans. Amer. Math. Soc. 37 (1935), 226–253.

    MathSciNet  Google Scholar 

  9. Forster, O. : Riemannsche Flächen. Springer, 1977. (English translation: Riemann Surfaces, Springer, 1981).

    Book  MATH  Google Scholar 

  10. Hardy, G. H., A. E. Ingham and G. Pólya : Theorems concerning mean values of analytic functions. Proc. Royal Society 113 (1927), 542–569.

    Article  MATH  Google Scholar 

  11. Harnack, A. Grundlagen der Theorie des logarithmischen Potentials in der Ebene. Leipzig, 1887.

    Google Scholar 

  12. Kodaira, K.: Holomorphic mappings of polydiscs into compact complex manifolds. Jour. of Diff. Geometry 6 (1971), 33–46.

    MathSciNet  MATH  Google Scholar 

  13. Koebe, P.: Herleitung der partiellen Differentialgleichung der Potentialfunktion aus der Integraleigenschaft. Sitzungsberichte Berlin Math. Ges. 5 (1906), 39–42.

    Google Scholar 

  14. Lelong, P.: Fonctions plurisousharmoniques et formes différentielles positives. Gordon and Breach, 1968.

    MATH  Google Scholar 

  15. Littlewood, J. E.: On the definition of a subharmonic function. Jour. Lon. Math. Soc. 2 (1927), 192–196.

    Article  MathSciNet  MATH  Google Scholar 

  16. Narasimhan, R.: Several complex variables. Chicago: University of Chicago Press, 1971.

    MATH  Google Scholar 

  17. Oka, K.: Domaines finis sans point critique intérieur Jap. Jour. Math. 27 (1953), 97–155. (See also: Domaines pseudoconvexes, Tohoku Math. Jour. 49 (1942), 15–52.)

    MathSciNet  Google Scholar 

  18. Perron, O.: Eine neue Behandlung der ersten Randwertaufgabe für ∆ u = 0. Math. Zeit. 18 (1923), 42–54.

    Article  MathSciNet  MATH  Google Scholar 

  19. Privaloff, I. : Sur la théorie générale des fonctions harmoniques et subharmoniques, Rec. Math. Soc. Moscow 1 (1936), 103–120.

    MATH  Google Scholar 

  20. Rado, T.: Über eine nichtfortsetzbare Riemannsche Mannigfaltigkeit. Math. Zeit. 20 (1924), 1–6.

    Article  MathSciNet  Google Scholar 

  21. Radó, T.: Subharmonic functions. Springer, 1937. Chelsea reprint 1949.

    Google Scholar 

  22. Radó, T. and F. Riesz Über die erste Randwertaufgabe für ∆ u = 0. Math. Zeit. 22 (1925), 41–44.

    Article  MATH  Google Scholar 

  23. Remak, R.: Über potentialkonvexe Funktionen. Math. Zeit. 20 (1924), 126–130.

    Article  MathSciNet  MATH  Google Scholar 

  24. Remmert, R. and K. Stein : Eigentliche holomorphe Abbildungen. Math. Zeit. 73 (1960), 159–189.

    Article  MathSciNet  MATH  Google Scholar 

  25. Riemann, B.: Grundlagen für eine allgemeine Theorie der Functionen einer veränderlichen complexen Grösse. Collected Works, 3–45.

    Google Scholar 

  26. Riemann, B.: Theorie der Abel’schen Functionen. Borchardt’s Journal 54 (1857), Collected Works, 88–142.

    Google Scholar 

  27. Riesz, F.: Über subharmonische Funktionen und ihre Rolle in der Funktionentheorie. Acta Sci. Math. Szeged 2 (1925), 87–100.

    MATH  Google Scholar 

  28. Riesz, F.: Sur les fonctions subharmoniques et leur rapport à la théorie du potentiel, parts I, II. Acta Math. 48 (1926), 329–343; 54 (1930), 321–360.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media New York

About this chapter

Cite this chapter

Narasimhan, R. (1985). Subharmonic Functions and the Dirichlet Problem. In: Complex Analysis in one Variable. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1106-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1106-6_11

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-0-8176-3237-3

  • Online ISBN: 978-1-4757-1106-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics