Advertisement

Neurophysiology

  • Edward K. Yeargers
  • Ronald W. Shonkwiler
  • James V. Herod

Abstract

This chapter presents a discussion of the means, primarily electrical, by which the parts of an organism communicate with each other. We will see that this communication is not like that of a conducting wire; rather, it involves a selfpropagating change in the ionic conductance of the cell membrane.

Keywords

Postsynaptic Neuron Presynaptic Neuron Giant Axon Postsynaptic Cell Follicle Stimulate Hormone Receptor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References and Suggested Further Reading

  1. 1.
    Neuronal biology and physiology: Elaine N. Marieb, Human Anatomy and Physiology, The Benjamin/Cummings Publishing Company, Inc. Redwood City, California, 1992.Google Scholar
  2. 2.
    Neuronal biology: Peter H. Raven and George B. Johnson, Biology, Mosby-Year Book, St. Louis, MO, 3rd ed., 1992.Google Scholar
  3. 3.
    Neuronal biophysics: F. R. Hallett, P. A. Speight and R. H. Stinson, Introductory Biophysics, Halstead Press, John Wiley and Sons, Inc., New York, 1977.Google Scholar
  4. 4.
    Molecular biology of neurons: Bruce Alberts, Dennis Bray, Julian Lewis, Martin Raff, Keith Roberts and James D. Watson, Molecular Biology of the Cell, Garland Publishing, Inc. New York, 3rd ed., 1994.Google Scholar
  5. 5.
    Hodgkin—Huxley experiments: J. D. Murray, Mathematical Biology, Springer-Verlag, New York, 1989.zbMATHGoogle Scholar
  6. 6.
    Hodgkin—Huxley experiments: A. L. Hodgkin, A. F. Huxley, Currents carried by sodium and potassium ions through the membrane of the giant axon of Logio, J. Physio. 116, 449–472, 1952a.Google Scholar
  7. 7.
    Hodgkin—Huxley experiments: A. L. Hodgkin, A. F. Huxley, Components of membrane conductance in the giant axon of Logio, J. Physio. 116, 473–496, 1952b.Google Scholar
  8. 8.
    Hodgkin—Huxley experiments: A. L. Hodgkin, A. F. Huxley, The dual effect of membrane potential on sodium conductance in the giant axon of Logio, J. Physio. 116, 497–506, 1952c.Google Scholar
  9. 9.
    Hodgkin—Huxley experiments: A. L. Hodgkin, A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, J. Physio. 117, 500–544, 1952d.Google Scholar
  10. 10.
    Hodgkin—Huxley experiments: A. L. Hodgkin, A. F. Huxley, B. Katz, Measurement of current-voltage relations in the membrane of the giant axon of Logio, J. Physio. 116, 424–448, 1952.Google Scholar
  11. 11.
    Hodgkin—Huxley experiments: R. V. Churchill, J. W. Brown, Fourier Series and Boundary Value Problems, 4th ed., McGraw-Hill. NY. 1987.Google Scholar
  12. 12.
    Fitzhugh—Nagumo equations: R. Fitzhugh, Impulses and physiological states in theoretical models of nerve membrane, Biophy. J. 1, 445–466, 1961.CrossRefGoogle Scholar
  13. 13.
    Fitzhugh—Nagumo equations: J. S. Nagurno, S. Arimoto, S. Yoshizawa, An active pulse transmission line simulating nerve axon, IRE 20, 2061–2071, 1962.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • Edward K. Yeargers
    • 1
  • Ronald W. Shonkwiler
    • 2
  • James V. Herod
    • 2
  1. 1.School of BiologyGeorgia Institute of TechnologyAtlantaUSA
  2. 2.School of MathematicsGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations