Spatiotemporal Properties of the α Rhythm

  • Alfredo Alvarez Amador
  • Roberto D. Pascual-Marqui
  • Pedro A. Valdés-Sosa


Ontogenetic development of the brain is reflected in the EEG, the most prominent changes consisting of variations in its frequency composition. These variations lead to the establishment of the a rhythm in late childhood (Niedermeyer, 1987; Petersén et al., 1975). This phenomenon has been the subject of many studies that have been carried out first by manual measurement of the dominant frequency of the EEG (Lindsley, 1939) and later using more accurate quantitative techniques (Gibbs and Knott, 1949; John et al., 1980; Matoušek and Petersén, 1973a, and b; Petersén et al., 1975) based on the use of EEG spectral analysis.


Strange Attractor Volume Conduction Alpha Rhythm Interelectrode Distance Generalize Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alvarez, A., Ricardo, J., Valdés, P., Pascual, R. (1985): Clinical evaluation of the Xi-Alpha model for the EEG. Comparison with broad band spectral features. Neuroscience Branch, Technical Report No. NH-001, Havana, National Center for Scientific ResearchGoogle Scholar
  2. Alvarez, A., Valdés, P., Pascual, R. (1987): EEG developmental equations confirmed for Cuban schoolchildren. Electroenceph. Clin. Neurophysiol. 67, 330–332CrossRefGoogle Scholar
  3. Alvarez, A., Valdés, P., Pascual, R., Galan, L., Bosch, J., Biscay, L. (1989): On the structure of EEG. Electroenceph. Clin. Neurophysiol. 73, 10–19CrossRefGoogle Scholar
  4. Andersen, P., Andersson, S.A. (1968): Physiological basis of the alpha rhythm. New York: Meredith CorporationGoogle Scholar
  5. Barlow, J.S. (1985): Methods of analysis of nonstationary EEGs, with emphasis on segmentation techniques: A comparative review. J. Clin. Neurophysiol. 2, 267–304CrossRefGoogle Scholar
  6. Biscay, R., Pascual, R., Valdés, P. (1986): Estimació Bayesiana empirica sin el use de la densidad marginal. V Conferencia Cientíca de Ciencas Naturales. Universidad de la Habana, Ciudad de la Habana. CubaGoogle Scholar
  7. Brillinger, R.D. (1981): Time series: Data analysis and theory (expanded edition). New York: Holt, Rinehart and WinstonGoogle Scholar
  8. Brillinger, R. D. (1983): The finite Fourier transform of a stationary process. In: Handbook of statistics: vol 3. Brillinger, D.R., Krishnaian, P.R. (eds.). Amsterdam: Elsevier, pp. 21–37Google Scholar
  9. Chapman, R.M., Ilmoniemi, R., Barbanera, S., Romani, G.L. (1984): Selective localization of alpha from brain activity with neuromagnetic measurements. Electroenceph. Clin. Neurophysiol. 58, 569–572CrossRefGoogle Scholar
  10. Cox, D.R., Hinkley, D.V. (1974): Theoretical statistics. London: Chapman and Hall Damiani, S., Alverez, A., Ricardo, J., Pascual, R., Valdés, P. (1987): Analysis multivariado del electroencefalograma en escolares cubanos de 7 a 11 anos. In: Estudios avanzados en neurociencias. Havana: Ciudad de la Habana, CENIC. 142–157Google Scholar
  11. Davies, R.B. (1983): Optimal inference in the frequency domain. In: Handbook of statistics: vol 3. Brillinger, D.R., Krishaiah, P.R. (eds.). Amsterdam: Elsevier, pp. 73–92Google Scholar
  12. Defayolle, M., Dinand, J.P. (1974): Application de l’analyse factorielle a l’etude de la structure de l’EEG. Electroencep. Clin. Neurophysiol. 36, 319–322CrossRefGoogle Scholar
  13. Elashoff, R.M., Afifi, A.A. (1966): Missing values in multivariate statistics-I. Review of the literature. J. Am. Statist. Assoc. 61, 595–604Google Scholar
  14. Elmgren, J., Lowenhard, P. (1973): Un anâlis factorial del EEG humano. Rev. de Psicologia General y Aplicada (Madrid) 28, 255–271Google Scholar
  15. Galan, L., Bosch, J., Biscay, L., Szava, S., Valdés, P. (1989): Statistical technology of neurometric norm construction. Neuroscience 89. La Havana, Cuba. FebruaryGoogle Scholar
  16. Gasser, T. (1977): General characteristics of the EEG as a signal. In: EEG informatics. A didactic review of methods and applications of EEG data processing. Rémond, A. (ed.). Amsterdam: Elsevier Biomedical Press, pp. 37–55Google Scholar
  17. Gasser, T., Mocks, J., Bacher, P. (1983a): Topographic factor analysis of the EEG with applications to development and to mental retardation. Electroenceph. Clin. Neurophysiol. 55, 445–463CrossRefGoogle Scholar
  18. Gasser, T., Mocks, J., Lenard, H.G., Bacher, P., Verleger, R. (1983b): The EEG of mildly retarded children: Developmental, classificatory, and topographic aspects. Electroencep. Clin. Neurophysiol. 55, 131–144CrossRefGoogle Scholar
  19. Gersch, W., Yonemoto, J., Naitoh, P. (1977): Automatic classification of multivariate EEGs using an amount of information measure and the eigenvalues of parametric time series models features. Comput. Biomed. Res. 10, 297–318CrossRefGoogle Scholar
  20. Gibbs, F.A., Knott, J.R. (1949): Growth of the electrical activity of the cortex. Electroenceph. Clin. NeurophysioL 1, 223–229Google Scholar
  21. Herrmann, W.M. (1982): Development and critical evaluation of an objective procedure for the electroencephalographic classification of psychotropic drugs. In: Electroencephalography in drug research. Herrmann, W.M. (ed.). Stuttgart: Fischer, pp. 249–351Google Scholar
  22. Herrmann, W.M., Roehmel, J. Streitberg, B., Willmann, J. (1983): Example for applying the COMSTAT algorithm to electroencephalogram data to describe variance sources. Neuropsychobiology 10, 164–172Google Scholar
  23. Hjorth, B. (1970): EEG analysis based on time domain properties. Electroenceph. Clin. Neurophysiol. 29, 306–310CrossRefGoogle Scholar
  24. Ilmoniemi, R.J., Williamson, S.J., Hostetler, W.E. (1988): New method for the study of spontaneous brain activity. In: Biomagnetism ‘87. Proceedings of the Sixth International Conference on Biomagnetism. Tokyo, Japan, August 27–30. Atsumi, K., Kutani, M., Veno, S., Katila, T., Williamson, S.J. (eds.). Tokyo: Denki University Press, pp. 182185Google Scholar
  25. Jansen, B., Jasman, A., Lenten, R. (1981): Piecewise analysis of EEGs using AR-modelling and clustering. Int. J. Neurosci. 14, 168–178Google Scholar
  26. John, E.R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., Kaye, H. (1980): Developmental equations for the EEG. Science 210, 1255–1258CrossRefGoogle Scholar
  27. John, E.R., Prichep, L., Easton, P. (1987): Normative data banks and neurometrics. Basic concepts, methods and results of norm constructions. In: EEG Handbook, revised series: vol 1. Methods of analysis of brain electrical and magnetic signal. Gevins, A.S., Rémond, S. (eds.). Amsterdam and New York: Oxford, Elsevier, pp. 449–495Google Scholar
  28. Khatri, C.G. (1966): A note on a MANOVA model applied to problems in growth curve. Ann. Inst. Statist. Math. 18, 75–86CrossRefGoogle Scholar
  29. Kingma, Y.J., Pronk, C.N.A., Sparreboom, D. (1976): Parameter estimation of power spectra using Gaussian functions. Comput. Biomed. Res. 9, 591–599CrossRefGoogle Scholar
  30. Krishnaiah, P.R., Lee, J.C., Chang, T.C. (1983): Likelihood ratio tests on covariance matrices and mean vectors of complex multivariate normal populations and their applications in time series. In: Handbook of statistics: vol. 3. Brillinger, D.R., Krishnaiah, P.R. (eds.). Amsterdam: Elsevier, pp. 439–476Google Scholar
  31. Lagerlund, T.D., Sharbrough, F.W. (1988): Computer simulation of neuronal circuit models of rhythmic behavior in the electroencephalogram. Comput. Biot Med. 18, 267–304CrossRefGoogle Scholar
  32. Lagerlund, T.D., Sharbrough, F.W. (1989): Computer simulation of the generation of the electroencephalogram. Electroenceph. Clin. Neurophysiol. 72, 31–40CrossRefGoogle Scholar
  33. Lehmann, D. (1986): Spatial analysis of EEG and evoked potential data. In: Topographic mapping of brain electrical activity. Duffy, F.H. (ed.). Boston: ButtersworthGoogle Scholar
  34. Lindsley, D.B. (1939): A longitudinal study of the alpha rhythm in normal children: Frequency and amplitude standards. J. Genet. Psycho!. 55, 197–213Google Scholar
  35. Lopes da Silva, F., Storm van Leeuwen, W. (1977): The cortical sources of the alpha rhythm. Neurosci. Len. 6, 237–241CrossRefGoogle Scholar
  36. Lopes da Silva, F., Storm van Leeuwen, W. (1978): The cortical alpha rhythm in dog: Deep and surface profile of phase. In: Architectonics of the cerebral cortex, IBRO Monograph Series, vol 3, Brazier, M.A.B., Petsche, H. (eds.). New York: Raven Press, pp. 319–333Google Scholar
  37. Lopes da Silva, F., van Lierop, T.H., Schrijerr, C.F., Storm van Leeuwen, W. (1973): Organisation of thalamic and cortical alpha rhythms: Spectra and coherences. Electroenceph. Clin. NeurophysioL 35, 627–639CrossRefGoogle Scholar
  38. Lopes da Silva, F., Hoeks, A., Zetterberg, L. (1974): Model of the brain rhythmic activity: The alpha rhythm of the thalamus. Kybernetic, 15, 27–37CrossRefGoogle Scholar
  39. Lopes da Silva, F., van Rotterdam, A., Barts, P., van Heusden, E., Burr, W. (1976): Models of neuronal populations: The basic mechanisms of rhythmicity. Progr. Brain Res. 45, 281–308CrossRefGoogle Scholar
  40. Lopes da Silva, F., Vos, J.E., Mooibroek, J., van Rotterdam, A. (1980): Relative contributions of intracortical and thalamo-cortical processes in the generation of alpha rhythms, revealed by partial coherence analysis. Electroenceph. Clin. Neurophysiol. 50, 449–456CrossRefGoogle Scholar
  41. Matousek, M., Petersén, I. (1973a): Frequency analysis of the EEG in normal children and in normal adolescents. In: Automation of clinical electroencephalography. Kellaway, P., Petersen, I. (eds.). New York: Raven Press, pp. 75–102.Google Scholar
  42. Matousek, M., Petersén, I. (1973b): Automation evaluation of the EEG background activity by means of age dependent EEG quotients. Electroenceph. Clin. Neurophysiol. 35, 603–612CrossRefGoogle Scholar
  43. Niedermeyer, E. (1987): Maturation of the EEG: Development of the waking and sleep patterns. In: Electroencephalography: Basic principles, clinical applications and related fields, 2nd ed. Niedermeyer, E., Lopes da Silva, F. (eds.). Baltimore: Urban and SchwarzenbergGoogle Scholar
  44. Nunez, P. (1981): Electrical fields of the brain: The neurophysics of EEG. New York: Oxford Univ. PressGoogle Scholar
  45. Pascual, R., Valdés, P., Alvarez, A. (1985): Multivariate spectral modelling of the EEG: The ?;a model. Neuroscience Branch, Technical Report No. NC-001, Havana, National Center for Scientific ResearchGoogle Scholar
  46. Pascual, R.D., Valdés, P.A., Alvarez, A. (1988): A parametric model for multichannel EEG spectra. Int. J. Neurosci. 40, 89–99CrossRefGoogle Scholar
  47. Petersén, I., Selldén, U., Eeg-Olofsson, O. (1975) The evolution of the EEG in normal children and adolescents from 1 to 21 years. In: Handbook of electroencephalography and clinical neurophysiology: vol 6. The normal EEG throughout life. Part B. The evolution of the EEG from birth to adulthood. Lairy, G.C. (ed.). Amsterdam: Elsevier, pp. 31–59Google Scholar
  48. Praetorius, H.M., Bodenstein, G., Creutzfeldt, O.D. (1977): Adaptive segmentation of EEG records: A new approach to automatic EEG analysis. Electroenceph. Clin. Neurophysiol. 42, 84–94Google Scholar
  49. Serfling, R.J. (1980): Approximation theorems of mathematical statistics. New York: WileyCrossRefGoogle Scholar
  50. Thatcher, R.W., Krause, P.J., Hrybyk, M. (1986): Corticocortical associations and EEG coherence: A two compartmental model. Electroenceph. Clin. Neurophysiol. 64, 123143Google Scholar
  51. Valdés, P.A. (1984): Statistical bases. In: Functional neuroscience: vol. III. Neurometric assessment of brain dysfunction in neurological patients. Harmony, T. (ed.). Hillsdale, NJ: Lawrence Erlbaum Associates, pp. 141–254Google Scholar
  52. Valdés, P., Biscay, R., Pascual, R., Jimenez, J.C., Alvarez, A. (1985): A quantitative description of the development of neurometric parameters. Neuroscience Branch, Technical Report No. NC-003, Havana, National Center for Scientific ResearchGoogle Scholar
  53. Valdés, P.A., Pascual, R.D., Jimenez, J.C., Biscay, R., Carballo, J.A., Gonzalez, S.L. (1987): Functionally based statistical methods for the analysis of the EEG and event related potentials. In: Progress in computer-assisted function analysis. Willems, J.L., Bemmel, J.H., Michel, J. (eds.). Amsterdam: North Holland, pp. 91–96Google Scholar
  54. Vvedensky, V.L., Gelman, E.B., Gurtovoy, K.G., Naurzakov, S.P., Ozhogin, V.I., Yu Shabanov, S. (1988a): Study of spontaneous activity of the human brain with a tangential neuromagnetometer. 1. Occipital alpha-rhythm. In: Biomagnetism 1987. Proceedings of the Sixth International Conference on Biomagnetism. Tokyo, Japan, August 27–30. Atsumi, K., Kutani, M., Veno, S., Katila, T., Williamson, T.J. (eds.). Tokyo: Denki University Press, pp. 190–193Google Scholar
  55. Vvedensky, V.L, Gurtovoy, K.G., Ilmoniemi, R.J., Kajola, M.J. (1988b): Determination of sources of the human magnetic alpha rhythm. Hum. Physiol. 13, 400–404Google Scholar
  56. Vvedensky, V.L., Gurtovoy, K.G., Gribenkin, A. P. (1989): Phase relationships in synchronous magnetic and electrical alpha activity in the parieto-occipital area of the human brain. Seventh International Conference on Biomagnetism. New York, August 14–18, Conference Digest New York University, pp. 365–366Google Scholar
  57. Williamson, S.J., Wang, J.Z., Illmoniemi, J.R. (1989): Method for locating sources of human alpha activity. Seventh International Conference on Biomagnetism. New York City, August 14–18 Conference Digest New York University, pp. 365–366Google Scholar
  58. Wennberg, A., Zetterberg, L.H. (1971): Application of a computer-based model for EEG analysis. Electroenceph. Clin. Neurophysiol. 31, 457–468CrossRefGoogle Scholar
  59. Wright, J.J., Kydd, R.R. (1984a): A linear theory for global electrocortical activity and its control by the lateral hypothalamus. Biol. Cybernetics 50, 75–82CrossRefGoogle Scholar
  60. Wright, J.J., Kydd, R.R. (1984b): A test for constant natural frequencies in electrocortical activity under lateral hypothalamic control. Biol. Cybernetics 50, 83–88CrossRefGoogle Scholar
  61. Wright, J.J., Kydd, R.R. (1984c): Inference of a stable dispersion relation for electrocortical activity controlled by the lateral hypothalamus Biol. Cybernetics 50, 89–94CrossRefGoogle Scholar
  62. Wright, J.J., Kydd, R.R., Lees, G.J. (1984): Amplitude and phase relations of electrocortical waves regulated by transhypothalamic dopaminergic neurones: A test for a linear theory. Biol. Cybernetics 50, 273–283CrossRefGoogle Scholar
  63. Zetterberg, L.H. (1969): Estimation of parameters for a linear difference equation with application to EEG analysis. Math. Biosci. 5, 227–275CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Alfredo Alvarez Amador
  • Roberto D. Pascual-Marqui
  • Pedro A. Valdés-Sosa

There are no affiliations available

Personalised recommendations