Representation of Information in the Brain

  • E. Roy John


Neurons in the brain have a resting potential across their membrane, which is usually about 90 mV with the outside positive with respect to the inside. When this membrane potential is sufficiently decreased, or depolarized, by an input stimulus, activation results and the cell fires. Firing results in a powerful after-hyperpolarization, which often lasts 80 to 100 msec and is inhibitory (Llinas and Yarom, 1986). During this inhibitory period, the cell is refractory, and the probability of response to otherwise effective input is absent or much reduced.


Conditioned Stimulus Lateral Geniculate Nucleus Plastic Cell Conditioned Avoidance Response Lateral Geniculate Body 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adey, W. R., Walter, D. O., Hendrix, C. E. (1961): Computer techniques in correlation and spectral analysis of cerebral slow waves during discriminative behavior. Exp. Neurol. 3, 501–524CrossRefGoogle Scholar
  2. Andersen, P., Andersen, S. (1968): Physiological basis of the alpha rhythm. New York: Appleton-Century-CroftsGoogle Scholar
  3. Bressler, S. L. (1987): Relation of olfactory bulb and cortex. I, Spatial variation of bulbo-cortical interdependence. Brain Res. 409, 285–293CrossRefGoogle Scholar
  4. Crick, F. (1984): Function of the thalamic reticular complex: The Searchlight hypothesis. Proc. Nat. Acad. Sci. USA 81, 4586–93CrossRefGoogle Scholar
  5. Efron, R. (1970): The relation between the duration of a stimulus and the duration of a perception. Neuropsychologia, 8: 37–35CrossRefGoogle Scholar
  6. Elul, R. (1972): The genesis of the EEG. Int. Rev. Neurobiol. 15, 228–272Google Scholar
  7. Fox, S., O’Brien, J. (1965): Duplication of evoked potential waveform by curve of probability of firing of a single cell. Science 147, 888–890CrossRefGoogle Scholar
  8. Gevins, A. S., Bressler, S. L., Morgan, N. H., Cutillo, B. A., White, R. M., Greer, D. S., Illes, J. (1989): Event related covariants during a bimanual visumotor task, I.Methods and analysis of stimulus- and time-locked data. EEG Clin. Neurol. 74, 58–75Google Scholar
  9. Hassler, R. (1979): Striatal regulation of adverting and attention directing induced by pallid stimulation. Appl. Neurophysiol. 42, 98–102.Google Scholar
  10. Jahnsen, H., Llinas, R. (1984): Ionic bases for the electroresponsiveness and oscillatory properties of guinea-pig thalamic neurones in vitro. J. Physiol. 349, 227–247Google Scholar
  11. John, E. R. (1976): Mechanisms of memory. New York: Academic PressGoogle Scholar
  12. John, E. R. (1972): Switchboard versus statistical theories of learning and memory. Science 177, 850–864CrossRefGoogle Scholar
  13. John, E. R., Killam, K. F. (1959): Electrophysiological correlates of avoidance conditioning in the cat. J. Pharm. Exp. Ther. 125, 252–274Google Scholar
  14. John, E. R., Killam, K. F. (1960): Electrophysiological correlates of differential approach-avoidance conditioning in cats. J. Nerv. Ment. Dis. 131, 183–201CrossRefGoogle Scholar
  15. John, E.R., Morgades, P. (1969): Patterns and anatomical distribution of evoked potentials and multiple unit activity by conditioned stimuli in trained cats. Comm. Behay. Biol. 3, 181–207Google Scholar
  16. John, E.R., Herrington, R., Sutton, S. (1967): Effects of visual form on the evoked response. Science 155, 1439–1442CrossRefGoogle Scholar
  17. John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., Kaye, H. (1980): Developmental EEG equations for the electronencepalogram. Science 210, 1255–1258CrossRefGoogle Scholar
  18. John, E. R., Prichep, L., Easton, P. (1987): Normative data banks and neurometrics: Basic concepts, methods and results of norms constructions. In: Handbook of electroencephalography and clinical neurophysiology; vol III. Computer analysis of the EEG and other neurophysiological signals. Remond, A. (ed.). Amsterdam: Elsevier, pp. 449–495Google Scholar
  19. John, E. R., Prichep, L. S., Mn, H., Kaye, H., Brown, D., Easton, P., Karmel, B. Z., Toro, A., Thatcher, R. (1989a): Neurometric evaluation of brain function in normal and learning disabled children. Ann Arbor, MI: Univ. of Michigan PressGoogle Scholar
  20. John, E. R., Prichep, L. S., Friedman, J., Easton, P. (1989b): Neurometric topographic mapping of EEG and evoked potential features: Application to clinical diagnosis and cognitive evaluation. In: Topographic brain mapping of EEG and evoked potentials.Maurer, K. (ed.). New York: Springer-Verlag, pp. 90–111CrossRefGoogle Scholar
  21. Laufer, M., Verzeano, M. (1967): Periodic activity in the visual system of the cat. Vision Res. 1, 215–229CrossRefGoogle Scholar
  22. Libet, B. (1973): Electrical stimulation of cortex in human subjects, and conscious sensory aspects. In: Handbook of sensory physiology: vol. II. Iggo, A. (ed.). New York: Springer-Verlag, pp. 743–790Google Scholar
  23. Livanov, M. N. (1977): Spatial organization of cerebral processes. New York: John Wiley & Sons.Google Scholar
  24. Llinas, R., Yarom, Y. (1981a): Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J. Physiol. 315, 549–567Google Scholar
  25. Llinas, R., Yarom, Y. (198 lb): Properties and distribution of ionic conductances generating electroresponsiveness of mammalian inferior olivary neurones in vitro. J. Physiol. 315, 569–584Google Scholar
  26. Llinas, R., Yarom, Y. (1986): Oscillatory properties of guinea-pig inferior olivary neurons and their pharmacological modulation: An in vitro study. J. Physiol. 376, 163Google Scholar
  27. Penfield,W. (1958): The excitable cortex in conscious man. Liverpool: Liverpool Press Pitts, W., McCulloch, W. (1947): How we know universals. Bull. Math. Biophysics 9, 127–147Google Scholar
  28. Ramos, A., Schwartz, E. L., John, E. R. (1976): Stable and plastic unit discharge patterns during behavioral generalization. Science 192, 393–396CrossRefGoogle Scholar
  29. Schwartz, E. L., Ramos, A., John, E. R. (1976): Single cell activity in chronic unit recording: A quantitative study of the unit amplitude spectrum. Brain Res. Bull. 1, 57–68CrossRefGoogle Scholar
  30. Scherg, M. (1990): Fundamentals of dipole source potential analysis. In: Auditory evoked magnetic fields and electrical potentials: Grandori, F., Hoxe, M., Romani, G. L. (eds.). Basel: S. Karger, pp. 40–69Google Scholar
  31. Sokolov, E. (1963): Perception and the conditioned reflex. New York: MacMillanGoogle Scholar
  32. Sotelo, C., Llinas, R., Baker, R. (1974): Structural study of inferior olivary nucleus of the cat: Morphorlogical correlates of electronic coupling. J. Neurophysiol. 37, 541–559Google Scholar
  33. Verzeano, M. (1963): Las funciones del systema nervioso. Acta Neurol. Latinoam.9, 296–307Google Scholar
  34. Verzeano, M., Negishi, K. (1960): Neuronal activity in cortical and thalamic networks. J. Gen. Physiol 43 (suppl. 177)Google Scholar
  35. von Bekesy, G. (1971): Auditory backward inhibition in concert halls. Science 171, 529–536Google Scholar
  36. Yarom, Y., Llinas, R. (1987): Long-term modifiability of anomalous and delayed rectification in guinea pig inferior olivary neurons. J. Neurosci. 7, 1166–1177Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • E. Roy John

There are no affiliations available

Personalised recommendations