The Statistical Analysis of Brain Images

  • Pedro A. Valdés-Sosa
  • Rolando Biscay Lirio


Mental processes are the result of the spatially and temporally distributed activity of neural masses. Advances in neurosciences in recent years have generated new, formalized theories about the dynamics of these neural ensembles (Lopes da Silva et al., 1987, Chapters 2, 3, and 6) and also new techniques for obtaining either static anatomical images (CT, MRI) of the structural constraints in which they are embedded or time-varying functional images (PET, EEG, MEG) of their activity.


Brain Image Functional Image Mahalanobis Distance Anatomical Image Cortical Atrophy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andreasen, N.C. (1988): Brain imaging: Applications in psychiatry. Science 239, 13811–1388CrossRefGoogle Scholar
  2. Bajcsy, R., Kovacic, S. (1989): Multiresolution elastic matching. Comput. Vis. Graphics Image Processing 46, 1–21CrossRefGoogle Scholar
  3. Barnard, A.C.L., Duck, I.M., Lynn, M.S. (1967): The application of electromagnetic theory to electrocardiology, I. Biophys. J. 7, 443–462CrossRefGoogle Scholar
  4. Biscay, R.J., Valdes, P., Aubert, E. (1988): Morphometric analysis of contours and surfaces. Revista GENIC Ciencias Biologicas 19, 3Google Scholar
  5. Biscay, R.J., Valdes, P., Pascual, R., Jimenez, J.C., Alvarez, A., Galan, L. (1989a): Multivariate Box-Cox transformations with applications to neurometric data. Comput. Biol. Med. 19, 4Google Scholar
  6. Bock, R.D. (1975): Multivariate statistical methods in behavioral research. New York: McGraw-HillGoogle Scholar
  7. Brillinger, D.R. (1975): Time series: Data analysis and theory. New York: MRW-Inc. Brillinger, D.R. (1981): The general linear model in the design and analysis of evoked response experiments. J. Theoret. Neurobiol. 1, 105–119Google Scholar
  8. Carballo, J.A., Valdes, P., Valdes, M. (1989): The detection of event related potentials. Int. J. Neurosci.Google Scholar
  9. Dekking, F.M., Van Otterloo, P.J. (1986): Fourier coding and reconstruction of complicated contours. IEEE Trans. Systems Man Cybern. SMC-16, 395–404Google Scholar
  10. Duffy, F.H. (1986): Topographic mapping of electrical brain activity. Boston: Butter-worthsGoogle Scholar
  11. Fu, K.S. (1980): Syntactic image modeling using stochastic tree grammars. Comput. Graphics Image Processing 12, 136–152CrossRefGoogle Scholar
  12. Gersch, W. (1987): Non-stationary multi channel time series analysis. In: Handbook of electroencephalography and clinical neurophysiology: vol. 1. Gevins, A.S., Rémond, A. (eds.). Amsterdam: ElsevierGoogle Scholar
  13. Gonzalez, S., Grave, R., Biscay, R., Jimenez, J.C., Pascual, R., Lemagne, J., Valdes, P. (1989): Projective methods for the magnetic direct problem. In: Advances of biomagnetism. Williamson, S., Kaufman, L. (eds.). New York: Plenum PressGoogle Scholar
  14. Grenander, U. (1981): Abstract inference. New York: WileyGoogle Scholar
  15. Grenander, U. (1983): Tutorial in pattern theory. Providence, RI: Division Applied Mathematics, Brown UniversityGoogle Scholar
  16. Hamalainen, M.S., Sarvas, J. (1987): Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. Technical Report TKK-F A614. Helsinki. Helsinki University of TechnologyGoogle Scholar
  17. Hibbard, S.L., McGlone, J.S., Davis, D.W., Hawkins, R.A. (1987): Three-dimensional representation and analysis of brain energy metabolism. Science 236, 1641–1646CrossRefGoogle Scholar
  18. Ishii, T. (1983): A comparison of cerebral atrophy in CT scan findings among alcoholic groups. Acta Psychiatr. Scand. 68, (Suppl.), 309CrossRefGoogle Scholar
  19. John, E.R., Tang, Y., Young, R., Brill, A.B., Young, R., Ono, K. (1986): Double-labeled metabolic maps of memory. Science 233, 1167–1175CrossRefGoogle Scholar
  20. John, E.R., Prichep, L.S., Easton, P. (1987): Normative data banks and neurometrics: Basic concepts, methods and results of norm construction. In: Handbook of electroencephalography and clinical neurophysiology: vol 1. Gevins, A.S., Rémond, A. (eds.). Amsterdam: ElsevierGoogle Scholar
  21. John, E.R., Prichep, J.F., Easton, P. (1988): Neurometrics: Computer-assisted differential diagnosis of brain functions. Science 239, 162–169CrossRefGoogle Scholar
  22. Kashyap, R.L., Chellappa, R. (1981): Stochastic models for closed boundary analysis: Representation and reconstruction. IEEE Trans. Information Theory IT-27, 627–637Google Scholar
  23. Kling, A.S. (1986): Comparison of PET measurement of local brain glucose metabolism and CT measurement of brain atrophy in chronic schizophrenia and depression. Am. J. Psychiatry 143, 175–180Google Scholar
  24. Loéve, M. (1967): Probability theory. New York: Springer-VerlagGoogle Scholar
  25. Lopes da Silva, F.H. (1987): Dynamics of generation of EEGs as signals of neural populations: models and theoretical considerations. In: Electroencephalography: Basic principles, clinical applications and related fields. Niedermeyer, E., Lopes da Silva, F. (eds.). Baltimore: Urban and SchwarzenbergGoogle Scholar
  26. Mardia, K.V., Kent, J. T., Bibby, J.M. (1979): Multivariate analysis. London: Academic PressGoogle Scholar
  27. Morihisa, J.M. (1985): Structure and function: Brain electrical activity mapping and computed tomography in schizophrenia. Biol. Psychiatry 20, 3–19CrossRefGoogle Scholar
  28. Nunez, P.L. (1981): Electric fields of the brain. The neurophysics of the EEG. New York: Oxford UniversityGoogle Scholar
  29. Park, K.S., Lee, N.S. (1987): A three-dimensional Fourier descriptor for human body representation/reconstruction. Comput. Biomed. Res. 20, 125–140CrossRefGoogle Scholar
  30. Pascual, R., Valdes, P., Alvarez, A. (1988a): A parametric model for multi-channel EEG spectra. Int. J. Neurosci.Google Scholar
  31. Pascual, R., Gonzalez, S., Valdes, P., Biscay, R. (1988b): Current source density estimation and interpolation based on the spherical harmonic Fourier expansion. Int. J. Neurosci.Google Scholar
  32. Persoon, E., Fu, K.S. (1977): Shape discrimination using Fourier descriptors. IEEE Trans. Systems Man Cybern. SMC-7, 170–179Google Scholar
  33. Petersen, S.E., Fox, P.T., Posner, M.I., Mintun, M., Raichle, M.E. (1988): Positron emission tomographic studies of cortical anatomy of single-word processing. Nature 331, 585–589CrossRefGoogle Scholar
  34. Rao, C.R., Mitra, S.K. (1971): Generalized inverse of matrices and its applications. New York: John Wiley and SonsGoogle Scholar
  35. Rawlings, R.R., Eckardt, M.J., Begleiter, H. (1984): Multivariate time series discrimination in the spectral domain. Comput. Biomed. Res. 17, 352–361CrossRefGoogle Scholar
  36. Rawlings, R.R., Rohrbaugh, J.W., Begleiter, H., and Eckhardt, M.J. (1986): Spectral methods of principal components analysis of event-related potentials. Comput. Biomed. Res. 19, 497–507CrossRefGoogle Scholar
  37. Scherg, M., Von Cramon, D. (1985): Two bilateral sources of the late AEP as identified by spatio-temporal dipole model. Electroencephalogr. Clin. Neurophysiol. 82, 32–44Google Scholar
  38. Starr, S.J., Metz, E., Lasted, L.B., Goodenough, D.J. (1975): Visual detection and localization of radiographic images. Diagn. RadioL 116, 533–538Google Scholar
  39. Swets, J.A. (1988): Measuring the accuracy of diagnostic systems. Science 240, 1285–1293CrossRefGoogle Scholar
  40. Takeda, S., Matzuzawa, T. (1984): Brain atrophy during aging: a quantitative study using computed tomography. J Am. Geratr. Soc. 32, 520–524Google Scholar
  41. Tomoyuki, I. (1983): A comparison of cerebral atrophy in CT scan findings among alcoholic groups. Acta Psychiatr. Scand. [Suppl.] 68Google Scholar
  42. Valdes, M., Bobes, M.A., Perez, M.C., Perera, M., Carballo, J.A., Valdes, P. (1987): Comparison of auditory evoked potential detection methods using signal detection theory. Audiology 26, 166–178CrossRefGoogle Scholar
  43. Valdes, M., Bobes, M.A. (1989): Making sense out of faces: ERP evidence for multiple memory systems. In: Machinery of the Mind John, E.R., Harmony, T., Prichep, L.S., Valdes-Sosa, M., and Valdes-Sosa, P. (eds.). New York: Raven Press, 1991Google Scholar
  44. Valdes, P. (1984): Statistical basis. In: Functional Neurosci. vol III. Harmony T. (ed.). New Jersey: Erlbaum AssociatesGoogle Scholar
  45. Valdes, P., Biscay, R.J., Pascual, R., Jimenez, J.C., Alvarez, A. (1985): A quantitative description of development of neurometric parameters. Technical report NC-003, Havana, Cuba: National Center for Scientific ResearchGoogle Scholar
  46. Valdes, P., Pascual, R., Jimenez, J.C., Carballo, J.A., Biscay, R.J., Gonzalez, S. (1988): Functionally based statistical methods for the analysis of the EEG and Event Related Potentials. In: Progress in computer-aisisted function analysis. Willems, L., van Bemmel, J.H., Michel, J. (eds.). Berlin: North-HollandGoogle Scholar
  47. Williamson, S.J., Kaufman, L. (1987): Analysis of neuromagnetic signals. In: Handbook of electroencephalography and clinical neurophysiology, vol 1 Gevins, A.S., Remond, A. (eds.). Amsterdam: Elsevier Science Publishers B. V.Google Scholar
  48. Winter, J. (1984): Automated computer tomography image analysis using contour map topology. IEEE Trans. on Medical Imaging 3, 163–169CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Pedro A. Valdés-Sosa
  • Rolando Biscay Lirio

There are no affiliations available

Personalised recommendations