On the Fallacy of Assigning an Origin to Consciousness

  • Walter J. Freeman


Recent developments in the theory of nonlinear dynamics that have been applied to brain theory have substantially expanded our understanding of the neural mechanisms by which large-scale patterns of brain activity are self-organized. In particular, these new concepts give us fresh insight into the neurodyanmics of goal-seeking behavior, how it emerges within the brain, and how it regulates the influx of sensory information into the cerebrum. It has become clear that the stimulus-response paradigm fails to address the most basic properties of biological intelligence, which are its autonomy and its creative powers. Chaotic dynamic systems not only destroy information (in the Shannon-Weaver sense) but they also create it. Our experimental studies of the electroencephalogram (EEG) have shown us that brains are chaotic systems that do not merely “filter” and “process” sensory input; they use sensory stimuli as “instructions” to create perceptual patterns that replace the stimuli.


Olfactory Bulb Sensory Input Entorhinal Cortex Limbic System Motor Command 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Blake, William (1793): The marriage of heaven and hell. New York: Random House (published in 1944 )Google Scholar
  2. Broca, P. (1873): Memoires and d’anthropologie. Paris: C. ReinwaldGoogle Scholar
  3. Dewey, J. (1896): Mind and consciousness. In: Intelligence in the modern world. Ratner, J. (ed.). New York: Random House (published in 1939 )Google Scholar
  4. Freeman, W.J. (1984): La fisiologia de las imagenes mentales. Salud Mentale 7, 3–8Google Scholar
  5. Freeman, W.J.: (1986): Petit mal seizure spikes in olfactory bulb and cortex caused by runaway inhibition after exhaustion of excitation. Brain Res. Rev. 11, 259–284CrossRefGoogle Scholar
  6. Freeman, W.J. (1987): Simulation of chaotic EEG patterns with a dynamic model of the olfactory system. Biol. Cybernetics 56, 139–150Google Scholar
  7. Gibson, J.J. (1979): The ecological approach to visual perception. New York: Houghton MifflinGoogle Scholar
  8. Goldman-Rakic, P. (1986): Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Handbook of physiology The nervous system V. Plum, F. (ed.). Baltimore, MD: William and Wilkins, pp. 373–417Google Scholar
  9. Hebb, Donald O. (1949): The organization of behavior. New York: WileyGoogle Scholar
  10. Helmholtz, H. von (1879): Physiological optics: vol 3: The perceptions of vision. Southall, J.P.C. (trans. and ed. ). Rochester, NY: Optical Society of America (published in 1925 ).Google Scholar
  11. Herrick, C. Judson (1924): Neurological foundations of animal behavior. New York: Hafner Publishing CompanyGoogle Scholar
  12. Kandel, E., Schwartz, J.H. (1981): Principles of neural science. New York: North Holland/ElsevierGoogle Scholar
  13. Kant, Immanuel. (1787): Kritik der reinen Vernunft. Frankfurt: Suhrkamp Taschenbücher Wissenschaft (reprinted in 1968 )Google Scholar
  14. Klopf, A. H. (1982): The hedonistic neuron. Washington, DC: Hemisphere Publishing CorporationGoogle Scholar
  15. Maturana, H. R., Varela, F. (1980): Boston studies in the philosophy of science: vol 42. Autopoiesis and cognition. Cohen, R.S., Wartovsky, M.W. (eds.). New York: ReidelGoogle Scholar
  16. Merleau-Ponty, M. (1942): La structure du comportement. Paris: Presses Universitaires de France Google Scholar
  17. O’Keefe, J., Nadel, L. (1978): The hippocampus as a cognitive map. Oxford: Clarendon PressGoogle Scholar
  18. Papez, J. W. (1937): A proposed mechanism of emotion. Arch. Neurol Psychiatr. 38, 725–743CrossRefGoogle Scholar
  19. Pavlov, I.P. (1927): Conditioned reflexes. Oxford: Oxford Univ. PressGoogle Scholar
  20. Prigogine, I. (1980): From being to becoming: Time and complexity in the physical sciences. San Francisco: W. H. FreemanGoogle Scholar
  21. Ramon Y Cajal, S. (1904): Textura del sistema nerviosa del hombre y los vertebrados. Madrid: Nicolas MoyaGoogle Scholar
  22. Sacks, O. (1985): The man who mistook his wife for a hat. New York: Summit BooksGoogle Scholar
  23. Skarda, C. A., Freeman, W.J. (1987): How brains make chaos in order to make sense of the world. Behay. Brain Sci. 10, 161–195CrossRefGoogle Scholar
  24. Sherrington, C. S. (1937): Man on his nature. Cambridge: Cambridge Univ. PressGoogle Scholar
  25. Sperry, R. W. ((1950): Neural basis of the spontaneous optokinetic response produced by visual inversion. J. Comp. PhysioL 43, 482–289Google Scholar
  26. Viana di Prisco, G. (1984): Hebb synaptic plasticity. Prog. Neurobiol. 22, 89–102CrossRefGoogle Scholar
  27. Viana di Prisco, G., Freeman, W. J. (1986): Representation espcacio-temporal dinamica de la informacion sensorial en el bulbo olfatorio. Acta Cientifica Venezolana 37, 526–531Google Scholar
  28. von Holst, E., Mittelstaedt, H. (1950): Das Reafferenzprinzip (Wechselwirckung zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37, 464–476CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Walter J. Freeman

There are no affiliations available

Personalised recommendations