Gangliosides, Learning, and Behavior

  • H. Schenk
  • U. Haselhorst
  • N. A. Uranova
  • A. Krusche
  • H. Hantke
  • D. D. Orlovskaja

Abstract

Gangliosides, a complex group of cell-surface sialoglycosphingolipids particularly abundant in neuronal tissues, are assumed to be involved in a variety of cell-surface events, such as synaptogenesis, regulation of cell-growth, neuronal regeneration (for review see Ledeen, 1984), and, last but not least, synaptic transmission (Rahmann, 1983; Wieraszko and Siefert, 1986). Indeed, some investigators have suggested that exogenous gangliosides promote structural repair after brain lesions in vivo (Sabel et al., 1984; Toffano et al., 1983), which may have implications for recovery of function (Dunbar et al., 1986). The facilitated recovery may be due as well to a reduction in neuronal cell loss and axonal/dendritic degeneration and a subsequent neuronal regeneration or both together (Karpiak et al., 1986). Nevertheless, the molecular events that underlie these effects remain unexplained.

Keywords

Nerve Growth Factor Neuronal Plasticity Neuraminic Acid Cognitive Study Granular Vesicle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Benes, F.M., Paskevich, P.A., Davidson, J., Domesick, V.B. (1985): The effect of haloperidol on synaptic patterns in the rat striatum. Brain Res. 329, 265–274CrossRefGoogle Scholar
  2. Beninger, R.J., Hanson, D.R., Phillips, A.G. (1981): The acquisition of responding with conditioned reinforcement. Br. J. Pharmacol. 74, 149–154CrossRefGoogle Scholar
  3. Dunbar, G.E., Butler, W.M., Fass, B., Stein, D.G. (1986): Behavioral and neurochemical alterations induced by exogenous gangliosides in brain damaged animals: Problems and perspectives. In: Gangliosides and neuronal plasticity, FIDIA Research Series: vol 6, Tettamanti, G., Ledeen, R.W., Sandhoff, K., Nagai, Y., Toffano, G. (eds.). Padova: Livana Press, pp. 365–380Google Scholar
  4. Flott, B., Masco, D., Seifert, W. (1988): Incorporation of 3H-GM1 ganglioside into astrocytes in cell culture. Neurochem. In. 13 (Suppl. 1), 111CrossRefGoogle Scholar
  5. Fuxe, K., Agnati, L.F., Benfenati, F., Zini, I., Gavioli, G., Toffano, G. (1986): New evidence for the morphofunctional recovery of striatal function by ganglioside GM1 treatment following a partial hemitransection of rats. Studies on dopamine neurons and protein phosphorylation. In: Gangliosides and neuronal plasticity, FIDIA Research Series: vol 6, Tettamanti, G., Ledeen, R.W., Sandhoff, K., Nagai, Y., Toffano, G. (eds.). Padova: Livana Press, pp. 347–365Google Scholar
  6. Ghidoni, R., Trinchera, M., Venerando, B., Fiorilli, A., Tettamanti, G. (1986): Metabolism of exogenous GM1 and related glycolipids in the rat. In: Gangliosides and neuronal plasticity, FIDIA Research Series: vol 6, Tettamanti, G., Ledeen, R.W., Sandhoff, K., Nagai, Y., Toffano, G. (eds.). Padova: Livana Press, pp. 183–200Google Scholar
  7. Haselhorst, U., Krusche, A., Schenk, H., Hantke, H. (1988): Einfluß von Gangliosiden auf das Erlernen einer bedingten Fluchtreaktion der Ratte an der Shuttle-Box. Biomed. Biochim. Acta, 47, 475–480Google Scholar
  8. Karpiak, S.E., Li, Y.S., Aceto, P., Mahadik, S.P. (1986): Acute effects of gangliosides on 16. Gangliosides, Learning, and Behavior 335Google Scholar
  9. CNS injury. In: Gangliosides and neuronal plasticity, FIDIA Research Series: vol 6,Tettamanti, G., Ledeen, R.W., Sandhoff, K., Nagai, Y., Toffano, G. (eds.). Padova: Livana Press, pp. 407–415Google Scholar
  10. Klinzova, A.J., Haselhorst, U., Uranova, N.A., Schenk, H., Istomin, V.V. (1989): The effects of haloperidol on synaptic plasticity in rat’s medial prefrontal cortex. J. Hirnforschg. 30, 51–57Google Scholar
  11. Lankford, K.L., DeMello, F.G., Klein, W.L. (1988): Dl-type dopamine receptors inhibit growth cone motility in cultured retina neurons: Evidence that neurotransmitters act as morphogenetic growth regulators in the developing central nervous system. Proc. Natl. Acad. Sci. USA. 85, 2839–2843CrossRefGoogle Scholar
  12. Ledeen, R.W. (1984): Biology of gangliosides: Neuritogenic and neuronotrophic properties. U. Neurosci. Res. 12, 147–159CrossRefGoogle Scholar
  13. Leon, A., Benvegnu, D., Daltoso, L., Presti, D., Facci, L., Giorgi, D., Toffano, G. (1984): Dorsal root ganglia and nerve growth factor. A model for understanding the mechanism of GM1 effect on neuronal repair. J. Neurosci. Res. 12, 227–288CrossRefGoogle Scholar
  14. McGaugh, J.H. (1973): Drug facilitation of memory and learning. Ann. Rev. Pharmacol. 13, 229–241CrossRefGoogle Scholar
  15. Nahrstedt, K., Weber, P., Kunert, M., Haselhorst, U. (1987): Steuerteil für Verhaltenstestapparaturen. Medizintechnik 27, 63–64Google Scholar
  16. Rahmann, H. (1983): Functional implication of gangliosides in synaptic transmission. Neurochem. In. 5, 539–547CrossRefGoogle Scholar
  17. Ramirez, O.A., Gomez, R.A., Caner, H.F. (1990): Gangliosides improve synaptic transmission in dentate gyrus of hippocampal rat slices. Brain Res. 506, 291–293CrossRefGoogle Scholar
  18. Sabel, B.A., Dunbar, G.L., Stein, D.G. (1984): Gangliosides minimize behavioral deficits and enhance structural repair after brain damage. J. Neurosci. Res. 12, 429–443CrossRefGoogle Scholar
  19. Sanger, D.J. (1985): The effects of clozapine on shuttle-box avoidance responding in rats:.Comparison with haloperidol and chloriazepoxide. Pharmacol. Biochem. Behay. 23, 231–236CrossRefGoogle Scholar
  20. Stephens, P.H., Tagari, P.C., Garofalo, L., Maysinger, D., Piotte, M., Cuello, A.C. (1987): Neural plasticity of basal forebrain cholinergic neurons: Effects of gangliosides. Neurosci. Lett. 80, 80–84CrossRefGoogle Scholar
  21. Stewart, M.G., Rose, S.P.R., King, T.S., Gabbott, P.L.A., Bourne, R. (1984): Hemispheric asymmetry of synapses in chick medial hyperstriatum ventrale following passive avoidance training: A stereological investigation. Dev. Brain Res. 12, 261–269CrossRefGoogle Scholar
  22. Stewart, M.G., Csillag, A., Rose, S.P.R. (1987): Alterations in synaptic structure in the paleostriatal complex of the domestic chick, Galeus domesticus, following passive avoidance training. Brain Res. 426, 69–81CrossRefGoogle Scholar
  23. Svennerholm, L. (1964): The gangliosides. J. Lipid. Res. 5, 145–155Google Scholar
  24. Tettamanti, G., Venerando, B., Roberti, S., Chigomo, V., Sonnino, S., Ghidoni, R., Orlando, P., Massari, P. (1981): The fate of exogenously administered brain gangliosides. In: Gangliosides in neurological and neuromuscular function, developmental and repair. Rapport, M.M., Gorio, A. (eds.). New York: Raven Press, pp. 225–240Google Scholar
  25. Tilson, H.A., Harry, G.J., Nary, H., Hudson, P.M., Hong, J.S. (1988): Ganglioside interactions with dopaminergic system of rats. J. Neurosci Res. 19, 88–94CrossRefGoogle Scholar
  26. Toffano, G., Savoni, G.E., Moroni, F., Lombardi, M.G., Calza, L., Agnati, L.F. (1983): GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res. 261, 163–166CrossRefGoogle Scholar
  27. Uranova, N.A. (1985): Action of clozapine on the ultrastructure of the brain. Z. Nevropatolog. L Psichi. 85, 1006–1011Google Scholar
  28. Uranova, N.A., Klinzova, A.J., Istomin, V.V., Haselhorst, U., Schenk, H. (1989): The effects of amphetamine on synaptic plasticity in rat’s medial prefrontal cortex, J. Hirnforsch. 30, 45–50Google Scholar
  29. Wieraszko, A., Seifert, W. (1986): Involvement of gangliosides in the synaptic transmission in the hippocampus and striatum of the rat brain. In: Gangliosides and neuronal plasticity, FIDIA Research Series: vol 6, Tettamanti, G., Ledeen, R.W., Sandhoff, K., Nagai, Y., Toffano, G. (eds.). Padova: Livana Press, pp. 137–151Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • H. Schenk
  • U. Haselhorst
  • N. A. Uranova
  • A. Krusche
  • H. Hantke
  • D. D. Orlovskaja

There are no affiliations available

Personalised recommendations