Skip to main content

The Variety of Configurations of Static Liquid Crystals

  • Chapter
Variational Methods

Abstract

Here we make several observations on a variety of special classes of harmonic maps from domains in IR3 to S 2. Such maps are relevant for the study of liquid crystals; see e.g. [HK1], [HKL1], [HKLu]. Part of our work is motivated by questions about the nonuniqueness and the number of harmonic maps having fixed boundary data. Here we show that the number may actually be infinite. For example, by Corollary 3.2 below there exists a one parameter family of distinct energy-minimizers each having the same Dirichlet boundary data.

Research partially supported by the National Science Foundation and the AFOSR through grant DMS-871881.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. J. Almgren, Jr. and E. Lieb, Singularities of energy minimizing maps from the ball to the sphere: Examples, counterexamples, and bounds, Ann. Math. 128 (1988), 483–530.

    Article  MathSciNet  MATH  Google Scholar 

  2. A. Baldes, Stability and uniqueness properties of the equator map from a ball into an ellipsoid, Math. Z. 185 (1984), 505–516.

    Article  MathSciNet  Google Scholar 

  3. H. Brezis, J.-M. Coron, and E. Lieb, Harmonic maps with defects, Comm. Math. Physics 107 (1986), 649–705.

    Article  MathSciNet  MATH  Google Scholar 

  4. R. Courant, Dirichlet’s principle, Interscience, 1950.

    Google Scholar 

  5. J.-M. Coron and F. Helein, Harmonic diffeomorphisms, minimizing harmonic maps, and rotational symmetry, preprint, Univ. Paris Sud, Orsay, 1988.

    Google Scholar 

  6. R. Cohen, R. Hardt, D. Kinderlehrer, S.Y. Lin, and M. Luskin, Minimum energy configurations for liquid crystals; computational results, in Theory and Applications of Liquid Crystals, IMA, 5, Springer, 1986.

    Google Scholar 

  7. Ding, Symmetric harmonic maps between spheres, preprint.

    Google Scholar 

  8. J. Ericksen, Static theory of point defects in nematic liquid crystals, preprint.

    Google Scholar 

  9. R. Gulliver and B. White, The rate of convergence of a harmonic map at a singular point, Math. Ann. 283 (1989), 539–550.

    Article  MathSciNet  MATH  Google Scholar 

  10. R. Hardt, Point and line singularities in liquid crystals, this volume.

    Google Scholar 

  11. F. Helein, Minima de la fonctionelle Ă©energie libre des cristaux liquides, Calcul des Variations, to appear in C.R.A.S.

    Google Scholar 

  12. R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in Theory and Applications of Liquid Crystals, IMA, 5, Springer, 1986.

    Google Scholar 

  13. R. Hardt and D. Kinderlehrer, Mathematical questions of liquid crystal theory, in College de France Seminar, vol. IV(3), 1987.

    Google Scholar 

  14. R. Hardt, D. Kinderlehrer, and F.H. Lin, Existence and partial regularity of static liquid crystal configurations, Comm. Math. Physics 105 (1986), 547–570.

    Article  MathSciNet  MATH  Google Scholar 

  15. R. Hardt, D. Kinderlehrer, and F.H. Lin, Stable defects of minimizers of constrained variational problems, Ann. Inst. Henri Poincare, Analyse non lineaire, 5, no. 4 (1988), 297–322.

    MathSciNet  MATH  Google Scholar 

  16. R. Hardt, D. Kinderlehrer, and M. Luskin, Remarks about the mathematical theory of liquid crystals, in Calculus of Variations and Partial Differential Equations, S. Hildebrandt, D. Kinderlehrer, and M. Miranda, ed., Lecture Notes in Math. 1340, 123–138.

    Google Scholar 

  17. S. Hildebrandt, H. Kaul, and K. Widman, An existence theory for harmonic maps of Riemannian manifolds, Acta Math. 188 (1977), 116.

    MathSciNet  Google Scholar 

  18. R. Hardt and F.H. Lin, A remark on H 1 mappings, Manuscripta Math. 56 (1986), 1–10.

    Article  MathSciNet  MATH  Google Scholar 

  19. R. Hardt and F.H. Lin, Mappings minimizing the LP norm of the gradient, Comm. Pure & Appl. Math. 40 (1987), 555–588.

    MathSciNet  MATH  Google Scholar 

  20. R. Hardt, and F.H. Lin, Stability of singularities of minimizing harmonic maps, to appear in J. DifÂŁ. Geom. 28 (1988).

    Google Scholar 

  21. W. Jager and H. Kaul, Uniqueness and stability of harmonic maps and their Jacobi fields, Manuscripta Math. 28 (4) (1979), 269–271.

    Article  MathSciNet  Google Scholar 

  22. W. Jager and H. Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions to an elliptic systems, J. Reine Angew. Math. 343 (1983), 146–161.

    MathSciNet  Google Scholar 

  23. D. Kinderlehrer, Recent developments in liquid crystal theory,Proceedings of Colloq. Lions.

    Google Scholar 

  24. B. Kawohl, Rearrangements and convexity of level sets in PDE, Lecture Notes in Math. 1150, Springer-Verlag, Berlin-Heidelberg-New York, 1985.

    Google Scholar 

  25. H.B. Lawson, The equivariant Plateau problem, Trans. A.M.S. 173 (1972), 231–250.

    Google Scholar 

  26. Lin, San-Yih, Numerical analysis of liquid crystal problems, Thesis, U. of Minnesota, 1987.

    Google Scholar 

  27. Lin, Fang-hua, Nonlinear theory of defects in nematic liquid crystals —phase transition and flow phenomena,to appear in Comm. Pures & Appl. Math.

    Google Scholar 

  28. J.L. Lions and E. Magenes, Nonhomogeneous boundary value problemsand applications I, Springer-Verlag, Berlin-Heidelberg-New York, 1962.

    Google Scholar 

  29. F. Morgan, A smooth curve in R 3 bounding a continuum of minimal surfaces, Arch. Rat. Mech. Anal. 75 (1981), 193–197.

    Google Scholar 

  30. F. Morgan, Finiteness of the number of stable minimal hypersurfaces with a fixed boundary, Indiana U. Math. J. 35 (4) (1986), 779–833.

    MathSciNet  Google Scholar 

  31. L. Simon, Isolated singularities of extrema of geometric variational problems, Lecture Notes in Math. 1186, Springer-Verlag, Berlin-Heidelberg -New York, 1986.

    Google Scholar 

  32. J. Sacks and K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981), 1–24.

    Article  MathSciNet  MATH  Google Scholar 

  33. R.T. Smith, Harmonic maps of spheres, Amer. J. Math. 97 (2) (1975), 364–385.

    Article  MATH  Google Scholar 

  34. N. Smale, Minimal hypersurfaces with many isolated singularities, Ann. Math. 130 (1989), 603–642.

    Article  Google Scholar 

  35. E. Stein, Singular integrals and differentiability properties of functions, Princeton, 1970.

    Google Scholar 

  36. R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1982), 307–335.

    MathSciNet  MATH  Google Scholar 

  37. R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem of harmonic maps, J. Diff. Geom. 18 (1983), 253–268.

    MathSciNet  MATH  Google Scholar 

  38. R. Schoen and K. Uhlenbeck, Regularity of minimizing harmonic maps into the sphere, Inventiones Math. 78 (1984), 89–100.

    Article  MathSciNet  MATH  Google Scholar 

  39. D. Zhang, Axially symmetric harmonic maps, preprint, Univ. Cal. San Diego, March, 1987.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Hardt, R., Kinderlehrer, D., Lin, F.H. (1990). The Variety of Configurations of Static Liquid Crystals. In: Berestycki, H., Coron, JM., Ekeland, I. (eds) Variational Methods. Progress in Nonlinear Differential Equations and Their Applications, vol 4. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1080-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1080-9_9

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1082-3

  • Online ISBN: 978-1-4757-1080-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics