Skip to main content

Morse Theory and Existence of Periodic Solutions of Elliptic Type

  • Chapter
Variational Methods

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 4))

Abstract

In this paper we study the problem of finding periodic solutions of elliptic type for Hamiltonian systems of the following form

$$ \left\{ {\begin{array}{*{20}{c}} {\dot x = J(Ax + N'(t,x))}\\ {x(0) = x(T)\quad with\quad T > 0;} \end{array}} \right. $$
(H)

whereJ is the matrix

$$ J \equiv \left( {\begin{array}{*{20}{c}} 0&{{I_n}}\\ { - {I_n}}&0 \end{array}} \right) $$

andI n is the identity of Rn,

$$\begin{array}{*{20}{c}} {A \equiv \left( {\begin{array}{*{20}{c}} {{A_n}}&0\\ 0&{{A_n}} \end{array}} \right),}\\ {{A_n} \equiv \left( {\begin{array}{*{20}{c}} {{a_1}}\\ 0 \end{array} \ddots \begin{array}{*{20}{c}} 0\\ {{a_n}} \end{array}} \right)} \end{array}$$

\( {a_j} \in R,{a_j} \ne 0,j = 1, \ldots ,n,N \in {C^2}(R \times {R^{2n}},R) \) denotes the partial gradient with respect to the second variable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R. Bott, On the iteration of closed geodesic and Sturm intersection. theory, Comm. Pure Appl. Math., 9 (1956), 176–206.

    Google Scholar 

  2. R. Bott, Lecture on Morse theory, old and new, Bull. Amer. Math. Soc. 7 (1982), 331–358.

    Article  MathSciNet  Google Scholar 

  3. F. Clarke, Periodic solutions of Hamiltonian inclusions, J. Differential Equations, 40 (1981), 1–6.

    Article  MathSciNet  Google Scholar 

  4. F. Clarke and I. Ekeland, Hamiltonian trajectories having prescribed minimal period, Comm. Pure Appl. Math. 33 (1980), 103–116.

    MATH  Google Scholar 

  5. C. Conley and E. Zehnder, The Birkhoff-Lewis fixed point theorem and a conjecture of V. Arnold, Invent. Math. 73 (1983), 33–49.

    MathSciNet  MATH  Google Scholar 

  6. B. D’Onofrio and I. Ekeland, La théorie de l’index pour certains systèmes hamiltoniens non définis positifs, C.R.A.S. Paris, 305, I, (1987), 249–251.

    Google Scholar 

  7. B. D’Onofrio and I. Ekeland, Hamiltonian systems with elliptic periodic orbits, preprint (1988).

    Google Scholar 

  8. I. Ekeland, Une théorie de Morse pour des systèmes hamiltoniens convexes, Ann. Inst. H. Poincaré Anal. Non Linéaire 1 (1984), 19–78.

    Google Scholar 

  9. I. Ekeland, An index theory for periodic solutions of convex Hamiltonian systems, Proc. of Symp. on Pure Math., 45 (1986).

    Google Scholar 

  10. I. Ekeland and H. Hofer, Periodic solutions with prescribed minimal period for convex autonomous Hamiltonian systems, Inv. Math., 81 (1985), 155–177.

    Article  MathSciNet  MATH  Google Scholar 

  11. I Ekeland and H. Hofer, Subharmonic solutions for convex nonautonomous Hamiltonian systems,Comm. Pure and Appl. Math. (to appear).

    Google Scholar 

  12. I. Ekeland and H. Hofer, Convex Hamiltonian energy surfaces and their periodic trajectories, preprint (1987).

    Google Scholar 

  13. M. Girardi and M. Matzen, Periodic solutions of Convex Autonomous Hamiltonian Systems and a Quadratic Growth at the Origin and Superquadratic at Infinity, Annali di Matematica Pura e Applicata Vol. CXLVII, 1987, 21–72.

    Google Scholar 

  14. J. Moser, Proof of a generalized form of a fixed point theorem due to G.D. Birkhoff, Lecture Notes in Math., 597, Springer Verlag, Berlin and New York (1977), 464–494.

    Google Scholar 

  15. P. Rabinowitz, Periodic solutions of Hamiltonian systems, Comm. Pure Appl. Math. 31 (1978), 157–184.

    Google Scholar 

  16. F. Takens Hamiltonian systems: generic properties of closed orbits and local perturbationsMath. Ann. 188 (1970), 304–312.

    Google Scholar 

  17. C. Viterbo, Thèse de Sème cycle, Université Paris I X, 1985.

    Google Scholar 

  18. C. Viterbo Une théorie de Morse pour les systemès hamitoniens étoilés C.R.A.S. Paris (1), 301 (1985), 487–489.

    Google Scholar 

  19. V. Yakubovich and V. Starzhinskii Linear differential equations with periodic coefficients Halstedt Press, Wiley, 1980.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

D’Onofrio, B., Ekeland, I. (1990). Morse Theory and Existence of Periodic Solutions of Elliptic Type. In: Berestycki, H., Coron, JM., Ekeland, I. (eds) Variational Methods. Progress in Nonlinear Differential Equations and Their Applications, vol 4. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1080-9_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1080-9_31

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1082-3

  • Online ISBN: 978-1-4757-1080-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics