Relaxed Energies for Harmonic Maps

  • F. Bethuel
  • H. Brezis
  • J. M. Coron
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 4)


$$Omega \subset {\mathbb{R}^3}$$
be an open bounded set such that
$$ \partial \Omega $$
is smooth. Set
$$ {H^1}\left( {\Omega ;{S^2}} \right) = \left\{ {u \in {H^1}\left( {\Omega ;{\mathbb{R}^3}} \right);|u\left( x \right)| = 1 a.e.} \right\} $$
$$ H_\varphi ^1\left( {\Omega ;{S^2}} \right) = \left\{ {u \in {H^1}\left( {\Omega ;{S^2}} \right);u = \varphi on \partial \Omega } \right\}, $$
$$ \varphi :\partial \Omega \to {S^2} $$
is a given boundary data.


Liquid Crystal Boundary Data Relaxed Energy Coron Theorem Static Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [Bel]
    F. Bethuel, A characterization of maps in H 1 (B 3, S 2 ) which can be approximated by smooth maps,to appear.Google Scholar
  2. [Be2]
    F. Bethuel, Approximation dans des espaces de Sobolev entre deux variétés et groupes d’homotopie,C.R. Acad. Sc. Paris 307 (1988),293–296, and The approximation problem for Sobolev maps between two manifolds,to appear.Google Scholar
  3. [BeZ]
    F. Bethuel and X. Zheng, Density of smooth functions between two manifolds in Sobolev spaces, J. Funct. Anal. 80 (1988), 60–75.MathSciNetCrossRefzbMATHGoogle Scholar
  4. [B1]
    H. Brezis, Liquid crystals and energy estimates for S 2 -valued maps, in Theory and Applications of Liquid Crystals, IMA Vol. 5 ( J.L. Ericksen and D. Kinderlehrer eds. ), Springer (1987).Google Scholar
  5. [B2]
    H. Brezis, Sk-valued maps with singularities, in Topics in the Calculus of Variations, (M. Giaquinta ed.).Lecture Notes in Math. 1365, Springer (1989), 1–30.Google Scholar
  6. [BC]
    H. Brezis and J.M. Coron, Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92 (1983), 203–215.MathSciNetCrossRefzbMATHGoogle Scholar
  7. [BCL]
    H. Brezis, J.M. Coron, and E. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), 649–705.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [HKL]
    R. Hardt, D. Kinderlehrer, and F.H. Lin, The variety of configurations of static liquid crystals, to appear.Google Scholar
  9. [HL]
    R. Hardt and F.H. Lin, A remark on H 1 mappings, Manuscripta Math. 56 (1986), 1–10.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [KW]
    H. Karcher and J.C. Wood, Non-existence results and growth properties for harmonic maps and forms, J. Reine Angew. Math. 353 (1984), 165–180.MathSciNetzbMATHGoogle Scholar
  11. [SU1]
    R. Schoen and K. Uhlenbeck, A regularity theory for harmonic maps, J. Diff. Geom. 17 (1983), 307–335.MathSciNetGoogle Scholar
  12. [SU2]
    R. Schoen and K. Uhlenbeck, Boundary regularity and the Dirichlet problem for harmonic maps, J. Diff. Geom. 18 (1983), 253–268.MathSciNetzbMATHGoogle Scholar
  13. [W]
    J.C. Wood, Non-existence of solutions to certain Dirichlet problems for harmonic maps, preprint Leeds Univ. (1981).Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • F. Bethuel
    • 1
  • H. Brezis
    • 2
    • 3
  • J. M. Coron
    • 4
  1. 1.CERMA, ENPCLa Courtine Noisy le GrandFrance
  2. 2.Département de MathématiquesUniversité P. et M. CurieParis Cedex 05France
  3. 3.Department of MathematicsRutgers University, Hill CenterNew BrunswickUSA
  4. 4.Département de MathématiquesUniversité Paris-SudOrsay CedexFrance

Personalised recommendations