Surfaces of Minimal Area Supported by a Given Body in ℝ3

  • G. Mancini
  • R. Musina
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 4)

Abstract

Existence theory in the “Plateau problem” is mostly concerned with surfaces spanning some given boundary configuration ([A], [Cou], [HiN], [GJ], [S], to quote a few).

Keywords

Riemannian Manifold Variational Inequality Minimal Surface Minimal Area Free Boundary Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A]
    Alt, H.W.: Die Existenz einer Minimalflache mit freimen Rand vorgeschriebener Lange, Arch. Rat. Mech. Anal. 51 (1973), 304 – 320MathSciNetCrossRefMATHGoogle Scholar
  2. [BC]
    Brezis, H., Coron,J.M.: Large solutions for harmonic maps in two dimensions, Comm. Math. Phys. 92, 203 – 215 (1983)MathSciNetCrossRefMATHGoogle Scholar
  3. [BCL]
    Brezis, H., Coron, J.M., Lieb,E.H.: Harmonic maps with defects, Comm. Math. Phys. 107, 649 – 705 (1986)MathSciNetCrossRefMATHGoogle Scholar
  4. [Cou]
    Courant, R.: Dirichlet principle, conformal mappings and minimal surfaces, Interscience, New York, 1950.Google Scholar
  5. [DeG]
    De Giorgi E.: Problemi di superfici minime con ostacoli: forma non cartesiana, B.U.M.I., 8, 80-88 (1973).Google Scholar
  6. [Du]
    Duzaar, F.: Variational inequalities and harmonic mappings, J. Reine Angewandte Math. 374, 39 – 60 (1987)MathSciNetMATHGoogle Scholar
  7. [F]
    Fuchs, M.: Variational inequalities for vector-valued functions with nonconvex obstacles, Analysis 5, 223 – 238 (1985)MathSciNetMATHGoogle Scholar
  8. [GJ]
    Gruter, M., J.Jost: On embedded minimal disks in convex bodies, A.I.H.P. Analyse non lineaire, 3, 5, 1986, 345 – 390MathSciNetGoogle Scholar
  9. [Hil1]
    Hildebrandt, S.: On the regularity of solutions of two-imensional variational problems with obstructions, Comm. Pure Appl. Math. 25, 479-496 (1972)Google Scholar
  10. [Hi2]
    Hildebrandt, S.: Boundary behaviour of minimal surfaces, Arc. Rat. Mech. Anal. 35, 47 – 82 (1969).Google Scholar
  11. [HiN]
    Hildebrandt, S., J.C.C. Nitsche: Minimal surfaces with free boundaries, Acta Matematica, 143 (1979) 251 – 272MathSciNetCrossRefMATHGoogle Scholar
  12. [LPL]
    Lions, P.L.: The concentration-Compactness principle in the Calculus of Variations: the limit case, Rev. Mat. Iberoamericana 1, 145-201 vol. 1 and 45 – 121 vol. 2 (1985)CrossRefGoogle Scholar
  13. [M]
    Musina R.: S2-type minimal surfaces enclosing many obstacles in R3, preprint. [MM] Mancini G., R. Musina: Surfaces of minimal area enclosing a given body in IR3 . Google Scholar
  14. [MiMo]
    Micaleff M.J., J.D. Moore: Minimal two spheres and the topology of manifolds with positive curvature on totally isotropic two planes, Ann. of Math., 198-227(1988).Google Scholar
  15. [Ni]
    Nitsche, J.C.C.: Vorlesungen uber minimalflachen, Springer, Berlin 1975CrossRefGoogle Scholar
  16. [SU]
    Sacks J., K.Uhlenbeck: The existence of minimal immersions of 2-spheres, Ann. of Math., 113, 1-24 (1981)MathSciNetGoogle Scholar
  17. [S]
    Struwe, M.: On a free boundary problem for minimal surfaces, Invent. Math., 75 (1984), 547 – 560MathSciNetMATHGoogle Scholar
  18. [T]
    Tomi, F.: Minimal surfaces and surfaces of prescribed mean curvature spanned over obstacles, Math. Ann. 190, 248 – 264 (1971)MathSciNetCrossRefMATHGoogle Scholar
  19. [W]
    Wente, H.: Large Solutions to the Volume Constrained Plateau Problem, Arch. Rat. Mech. and Analysis, 75, 59 – 77 (1980).MathSciNetMATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • G. Mancini
    • 1
  • R. Musina
    • 2
  1. 1.Dipartimento di MatematicaUniversità di BolognaItaly
  2. 2.SISSATriesteItaly

Personalised recommendations