The “magic” of Weitzenböck formulas

  • Jean-Pierre Bourguignon
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 4)


In recent years, problems of geometric origin have attracted the attention of many analysts. In some instances, Geometry was pointing to the most subtle case of an analytic problem, e.g., the limiting case of Sobolev inequalities in the Yamabe problem or in Yang-Mills theory. Moreover, phenomena of a geometric nature were appearing in a P.D.E. context like the “bubbling off” phenomenon in the harmonic map problem. In many of the geometric situations considered, the problem could be reduced to solving an elliptic scalar equation, most often a non-linear one.


Scalar Curvature Ricci Curvature Compact Riemannian Manifold Einstein Metrics Principal Symbol 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. Aubin, Equations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire, J. Maths Pures Appl. 55 (1976), 269–296.MathSciNetzbMATHGoogle Scholar
  2. [2]
    A. BARRI, à paraître.Google Scholar
  3. [3]
    P. BÉrard, From vanishing theorems to estimating theorems; the Bochner technique revisited, Bull. Amer. Math. Soc. 19 (1988), 371–406.MathSciNetCrossRefGoogle Scholar
  4. [4]
    M. Berger, P. GAUDUCHON, E. MAZET, Le spectre d’une variété riemannienne, Lect. Notes in Math. 194, Springer, Berlin-New York (1971).Google Scholar
  5. [5]
    S. Bochner, Vector fields and Ricci curvature, Bull. Amer. Math. Soc. 52 (1946), 776–797.MathSciNetCrossRefGoogle Scholar
  6. [6]
    J.-P. Bourguignon, Exposé n°XVI, in Géométrie riemannienne de dimension 4, Séminaire A. Besse, CEDIC-Nathan, Paris (1981).Google Scholar
  7. [7]
    J.-P. Bourguignon, Les métriques à courbure harmonique sur une variété compacte à signature non nulle sont d’Einstein, Inventiones Math. 63 (1981), 263–286.CrossRefGoogle Scholar
  8. [8]
    J.-P. Bourguignon, Une amélioration de l’inégalité de Kato et applications géométriques (à paraître).Google Scholar
  9. [9]
    J.-P. Bourguignon, J.-P. EZIN, Fonctions courbure interdites dans une classe conforme et transformations conformes, Trans. Amer. Math. Soc. 301 (1987), 723–736.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    J.-P. Bourguignon, H.B. Lawson, Stability and isolation phenomena for Yang-Mills fields, Commun. Math. Phys. 79 (1981), 189–230.MathSciNetCrossRefzbMATHGoogle Scholar
  11. [11]
    S. Kobayashi, Transformation groups in differential geometry, Erg. Math. 70, Springer, Berlin-Heidelberg-New York (1972).Google Scholar
  12. [12]
    K. Kodaira, J. MORROW, Complex manifolds, Holt-Rinehart-Wilson, New York (1971).zbMATHGoogle Scholar
  13. [13]
    N. Koiso, Non-deformability of Einstein metrics, Osaka J. Math. 15 (1978), 419–433.Google Scholar
  14. [14]
    J.M. Lee, T. PARKER, The Yamabe problem, Bull. Amer. Math. Soc. 17 (1987), 37–91.MathSciNetCrossRefzbMATHGoogle Scholar
  15. [15]
    A. Lichnerowicz, Géométrie des groupes de transformations, Dunod, Paris (1958).zbMATHGoogle Scholar
  16. [16]
    Y. Matsushima, Remarks on Kähler-Einstein manifolds, Nagoya Math. J. 46 (1972), 161–173.Google Scholar
  17. [17]
    A. Polombo, Condition d’Einstein et courbure négative en dimension 4, C.R. Acad. Sci. Paris 307 (1988), 667–670.Google Scholar
  18. [18]
    R. Schoen, Conformal deformation of a Riemannian metric to constant scalar curvature, J. Differential Geom. 20 (1984), 479–495.MathSciNetGoogle Scholar
  19. [19]
    R. Schoen, C.I.M.E. Lecture Notes Series (1988).Google Scholar
  20. [20]
    R. Schoen, L. SIMON, S.T. YAU, Curvature estimates for minimal hypersurfaces, Acta Math. 134 (1975), 479–495.MathSciNetCrossRefGoogle Scholar
  21. [21]
    Y.T. Siu, P. Yang, Compact Kähler surfaces of non-positive bisectional curvature, Inventiones Math. 64 (1981), 471–487.MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    P. Stredder, Natural differential operators on Riemannian manifolds and representations of the orthogonal and special orthogonal groups, J. Differential Geom. 10 (1976), 647–660.Google Scholar
  23. [23]
    C.H. Taubes, Self-dual Yang-Mills connections on non selfdual 4-manifolds, J. Differential Geom. 17 (1982), 139–170.MathSciNetGoogle Scholar
  24. [24]
    N. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa 22 (1968), 265–274.MathSciNetzbMATHGoogle Scholar
  25. [25]
    K. Uhlenbeck, Removable singularities for Yang-Mills fields, Commun. Math. Phys. 83 (1982), 11–30.MathSciNetCrossRefzbMATHGoogle Scholar
  26. [26]
    F.W. Warner, Foundations of differentiable manifolds and Lie groups, Universitext 94, Springer, New York-Heidelberg-Berlin (1983).Google Scholar
  27. [27]
    H. Wu, The Bochner technique in differential geometry, Math. Reports, London (1987).Google Scholar
  28. [28]
    H. Yamabe, On a deformation of Riemannian structures on compact manifolds, Osaka Math. J. 12 (1960), 21–37.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Jean-Pierre Bourguignon
    • 1
  1. 1.Centre de MathématiquesEcole PolytechniquePalaiseau CedexFrance

Personalised recommendations