Skip to main content

Nonlinear Variational Two-Point Boundary Value Problems

  • Chapter
Variational Methods

Part of the book series: Progress in Nonlinear Differential Equations and Their Applications ((PNLDE,volume 4))

Abstract

Let us consider the two-point boundary value problem

$$\begin{array}{*{20}{c}} {u''\left( x \right) = f\left( {x,u\left( x \right)} \right),x \in I,} \\ {u\left( 0 \right) = u\left( \pi \right) = 0} \end{array}$$
(1)

where I = [0, π], f: I × ℝ → ℝ is a Caratheorody function. As early as in 1915, Lichtenstein [9] observed that if the function F: I × ℝ → ℝ defined by

$$F(x,u) = \int_0^u {f(x,u)du} $$

for some real number A and all (x, u) ∈ I × ℝ, then the corresponding action integral

$$\varphi :u\mapsto \int_{I}{[(1/2){{(u'(x))}^{2}}}+F(x,u(x))]dx$$

is such that

$$F(x,u) \geqslant A$$
(2)

for some real number A and all (x, u) ∈ I × ℝ, then the corresponding action integral

$$\varphi :u \mapsto \int_I {[(1/2){{(u'(x))}^2}} + F(x,u(x))]dx$$

is bounded below on the set C 10 (I) of functions u of class C 1 on I which vanish at 0 and π,, and hence φ has an infimum d on C 10 (I). Lichtenstein introduced then a minimizing sequence (u n ) such that φ(u n ) → d as n →∞, namely the one coming from the associated Ritz method. Writing

$${u_n}(x) = \sum\limits_{j = 1}^\infty {({u_{n,j}}/j)\sin jx,} $$

so that

$$\sum\limits_{j = 1}^\infty {{u_{n,j}}\sin jx} $$

is the Fourier series of u n ′, Lichtenstein proved the existence of a subsequence (\({u_{{n_k}}}\) ) such that, for each j ∈ ℕ*, ( \({u_{{n_k},}}_j\)) converges to some u j as k → ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Cinquini, Sopra i problemi di valori al contorno per equazioni differenziali non lineari, Boll. Un. Mat. Ital. (1) 17 (1938), 99–105.

    MATH  Google Scholar 

  2. D.G. De Figueiredo and J.P. Gossez, Nonresonance below the first eigenvalue for a semilinear elliptic problem, Math. Ann. 281 (1988), 589–610.

    Article  MathSciNet  MATH  Google Scholar 

  3. M.L.C. Fernandes, P. Omani and F. Zanolin, On the solvability of a semilinear two-point BVP around the first eigenvalue,J. Differential and Integral Equations, to appear.

    Google Scholar 

  4. M.L.C. Fernandes and F. Zanolin, Periodic solutions of a second order di f ferential equation with one-sided growth restrictions on the restoring term, Archiv Math. (Basel) 51 (1988), 151–163.

    Article  MathSciNet  MATH  Google Scholar 

  5. A. Fonda and J.P. Gossez, Semicoercive variational problems at resonance,to appear.

    Google Scholar 

  6. A. Fonda and J. Mawhin, Quadratic forms, weighted eigenfunctions and boundary value problems for nonlinear second order ordinary differential equations, Proc. Royal Soc. Edinburgh 112A (1989), 145–153.

    Article  MathSciNet  MATH  Google Scholar 

  7. R.E. Gaines and J. Mawhin, Coincidence Degree and Nonlinear Differential Equations, Lecture Notes in Math., 568, Springer, Berlin, 1977.

    Google Scholar 

  8. A. Hammerstein, Nichtlineare Integralgleichungen nebst Anwendungen, Acta Math. 54 (1930), 117–176.

    Article  MathSciNet  MATH  Google Scholar 

  9. L. Lichtenstein, Uber einige Existenzprobleme der Variationsrechnung. Methode der unendlichvielen Variablen, J. Reine Angew. Math. 145 (1915), 24–85.

    Google Scholar 

  10. J. Mawhin, Problèmes de Dirichlet variationnels non linéaires, Sémin. Math. Sup. 104, Presses Univ. Montréal, Montréal, 1987.

    Google Scholar 

  11. J. Mawhin, J. Ward and M. Willem, Variational methods and semilinear equations, Arch. Rat. Mech. Anal. 95 (1986), 269–277.

    Article  MathSciNet  MATH  Google Scholar 

  12. J. Mawhin and M. Willem, Variational methods and boundary value problems for vector second order differential equations and applications to the pendulum equation,in “Nonlinear Analysis and Optimization,” Vinti ed., Lecture Notes in Math., 1107 Springer, Berlin, 1984, 181192.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media New York

About this chapter

Cite this chapter

Mawhin, J. (1990). Nonlinear Variational Two-Point Boundary Value Problems. In: Berestycki, H., Coron, JM., Ekeland, I. (eds) Variational Methods. Progress in Nonlinear Differential Equations and Their Applications, vol 4. Birkhäuser, Boston, MA. https://doi.org/10.1007/978-1-4757-1080-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-1080-9_14

  • Publisher Name: Birkhäuser, Boston, MA

  • Print ISBN: 978-1-4757-1082-3

  • Online ISBN: 978-1-4757-1080-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics