Advertisement

Existence of Multiple Solutions of Semilinear Elliptic Equations in RN

  • Yanyan Li
Part of the Progress in Nonlinear Differential Equations and Their Applications book series (PNLDE, volume 4)

Abstract

We study the existence of multiple solutions of semilinear elliptic equations in R N with growth of nonlinearities below the critical Sobolev exponent.

Keywords

Nontrivial Solution Multiple Solution Elliptic Partial Differential Equation General Boundary Condition Critical Sobolev Exponent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    S. Agmon,A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satifying general boundary conditions, Comm. Pure Appl. Math. 12 (1959),pp. 623–727.CrossRefGoogle Scholar
  2. [2]
    S. Agmon,A. Douglis and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satifying general boundary conditions, Comm. Pure Appl. Math. 17 (1964),pp. 35–92.CrossRefGoogle Scholar
  3. [3]
    H. Berestycki and P. L. Lions, Nonolinear scarlar field equations. Arch. Rat. Mech. Anal., I,82(1983) p. 313–346; II, 82 (1983) p. 347–376.MathSciNetzbMATHGoogle Scholar
  4. [4]
    H. Brezis and L. Nirenberg, Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm. Pure. Appl. Math. 36 (1983) pp 437–477MathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    H. Berestycki and C. Taubes,In preparation.Google Scholar
  6. [6]
    G. Cerami,S. Solimini and M. Struwe, Some existence results for superlinear elliptic boundary value problems involving critical exponents. J. Func. Anal. 69 (1986) pp 289–306CrossRefGoogle Scholar
  7. [7]
    C. V. Coffman, A nonlinear boundary value problem with many positive solutions. J. Diff. Eqn. 54 (1984) 429–437.MathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    Weiyue Ding, On a conformally invariant equation on R N.Google Scholar
  9. [9]
    Weiyue Ding and Weiming Ni, On the existence of positive entire solutions of a semilinear elliptic equation. Arch. Rat. Mech. Anal. 91 (1986),pp 288–308MathSciNetCrossRefGoogle Scholar
  10. [10]
    M. J. Esteban and P. L. Lions, Existence and nonexistence results for semilinear elliptic problems in unbounded domains. Proc. Roy. Soc. Edim., 93 (1981) pp. 1–14MathSciNetCrossRefGoogle Scholar
  11. [11]
    B. Gidas, W. Ni and L. Nirenberg, Symmetry of positive solutions of nonlinear elliptic equations in R N. in “Mathematical Analysis and Applications” Part A(L. Nachbin ed.) pp 370–401 Academic Press Orlando Fl. 1981.Google Scholar
  12. [12]
    D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations,2n d edition, Grundlehoen der mathematischen Wis- senschaften 224,Springer-Verlag.Google Scholar
  13. [13]
    T. Kato, Perturbation theory for linear operators, 2n d edition, Grundlehoen der mathematischen Wissenschaften 132,Springer-Verlag.Google Scholar
  14. [14]
    Y. Y. Li, Existence of multiple standing wave solutions of Schrödinger equations. PreprintGoogle Scholar
  15. [15]
    P. L. Lions, The concentration-compactness principle in the calculus of variations. The locally compact case. Ann. Inst. Henri. Poincare. Vol 1 (1984) pp 102–145 and pp 223–283Google Scholar
  16. [16]
    P. L. Lions, On positive solutions of semilinear elliptic equations in unbounded domsins. PreprintGoogle Scholar
  17. [17]
    Weiming Ni, Some aspects of semilinear elliptic equations. Lecture notes, Published by the National Tsing Hua University,Taiwan.Google Scholar
  18. [18]
    P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems, Edicioni Cremonese,Roma (1974),pp 141–195Google Scholar
  19. [19]
    P. H. Rabinowitz, A global theorem for nonlinear eigenvalue problems and applications. Contrib. Nonlinear Fcl. Anal. Academic Press. 1971,pp 11–36Google Scholar
  20. [20]
    C. A. Stuart,Bifurcation for Dirichlet problems without eigenvalues, Proc. London Math. Soc. (3) 45 (1982),pp 169–192CrossRefGoogle Scholar
  21. [21]
    W. A. Strauss, Existence of solitary waves in higher dimensions. Comm. Math. Phys. 55 (1977) 149–162MathSciNetCrossRefzbMATHGoogle Scholar
  22. [22]
    Dong ZhangGoogle Scholar
  23. [23]
    Xiping Zhu, Multiple entire solutions of a semilinear elliptic equation. PreprintGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • Yanyan Li
    • 1
  1. 1.Mathematics DepartmentRutgers UniversityNew BrunswickUSA

Personalised recommendations