Advertisement

Microemulsions pp 115-129 | Cite as

On the Structure and Dynamics of Microemulsions Self-Diffusion Studies

  • B. Lindman
  • N. Kamenka
  • B. Brun
  • P. G. Nilsson

Abstract

The thermodynamic stability of microemulsions being well established(1–3) it is natural to consider structural and molecular properties of microemulsions in relation to other stable phases which form in surfactant systems(4–6). There is unfortunately quite a bit of confusion about the term microemulsions, being used by some authors even for typical micelles of the normal or reversed type. Here our interest will focus on fluid isotropic phases which contain simultaneously high amounts of water and oil, the latter in a broad sense, i.e. a compound with very low aqueous solubility like a hydrocarbon or a long-chain alcohol. As one moves in the phase diagram from very high to very low water contents one must for a strongly associating system encounter some type of transition from normal to reversed type aggregates. This article reports on an attempt to use self-diffusion studies to contribute to our understanding of the structure and dynamics of such “transition” aggregates. Solutions of this type are found in “classical” microemulsions formed in four-component systems ionic surfactant — cosurfactant (normally a short-chain alcohol) — hydrocarbon-water(7). However, it is logical to consider in parallel also other systems with fluid isotropic phases containing at the same time high concentrations of water and hydrocarbon.

Keywords

Reversed Micelle Surfactant System Microemulsion System System Sodium Lamellar Liquid Crystal 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Shinoda and S. Friberg, Adv. Colloid Interface Sci., 4, 281, (1975).CrossRefGoogle Scholar
  2. 2.
    S. Friberg in “Microemulsions”, L. M. Prince, ed., Academic Press, New York, 133, (1977).Google Scholar
  3. 3.
    S. Friberg, I. Lapczynska and G. Gillberg, J. Colloid Interface Sci., 56, 19, (1976).CrossRefGoogle Scholar
  4. 4.
    P. Ekwall, Adv. Liquid Cryst., 1, 1, (1975).Google Scholar
  5. 5.
    H. Wennerström and B. Lindman, Phys. Reports, 52, 1, (1979).CrossRefGoogle Scholar
  6. 6.
    B. Lindman and H. Wennerström, Topics in Current Chemistry, 87, 1, (1980).PubMedCrossRefGoogle Scholar
  7. 7.
    L. M. Prince, ed, “Microemulsions”, Academic Press, New York, (1977).Google Scholar
  8. 8.
    K. Shinoda and H. Saito, J. Colloid Interface Sci., 26, 70, (1968).CrossRefGoogle Scholar
  9. 9.
    G. Gillberg, H. Lehtinen, and S. Friberg, J. Colloid Interface Sci., 33, 40, (1970).CrossRefGoogle Scholar
  10. 10.
    P. Ekwall and L. Mandell, Kolloid Z. Z. Polym., 233, 938, (1969).CrossRefGoogle Scholar
  11. 11.
    K. Fontell, Kolloid Z. Z. Polym., 250, 825 (1972).CrossRefGoogle Scholar
  12. 12.
    H. Wennerström, B. Lindman, O. Söderman, T. Drakenberg and J. B. Rosenholm, J. Amer. Chem. Soc., 101, 6860, (1979).CrossRefGoogle Scholar
  13. 13.
    B. Lindman and H. Wennerström in “Solution Chemistry of Surfactants”, E. J. Fendler and K. L. Mittal, eds., Plenum Press, New York, in press.Google Scholar
  14. 14.
    G. Lindblom and H. Wennerström, Biophys. Chem., 6, 167, (1977).PubMedCrossRefGoogle Scholar
  15. 15.
    T. Bull and B. Lindman, Mol. Cryst. Liq. Cryst. 28, 155, (1975)CrossRefGoogle Scholar
  16. 16.
    K. Fontell in “Liquid Crystals and Plastic Crystals”, Vol. 2, G. W. Gray and P. A. Winsor, eds., Ellis Horwood Publishers, Chichester, U.K., 80, 1974.Google Scholar
  17. 17.
    A. Tardieu and V. Luzzati, Biochim. Biophys. Acta 219, 11, (1970).CrossRefGoogle Scholar
  18. 18.
    V. Luzzati and P. A. Spegt, Nature 215, 701, (1967).CrossRefGoogle Scholar
  19. 19.
    V. Luzzati, A. Tardieu, T. Gulik-Kryzwicki, E. Rivas, and F. Reiss-Husson, Nature, 220, 485, (1968).PubMedCrossRefGoogle Scholar
  20. 20.
    V. Luzzati, T. Gulik-Krzywicki, and A. Tardieu, Nature, 217, 1028, (1968).PubMedCrossRefGoogle Scholar
  21. 21.
    G. W. Gray and P. A. Winsor, Mol. Cryst. Liq. Cryst. 26, 305, (1974).CrossRefGoogle Scholar
  22. 22.
    D. Coates and G. W. Gray, The Microscope, 24, 117, (1976).Google Scholar
  23. P. A. Winsor, Symposia Farada Soc., no 5, 1971 pp 89–161 (1972).Google Scholar
  24. 24.
    G. W. Gray and P. A. Winsor in “Liquid Crystals and Plastic Crystals”, G. W. Gray and P. A. Winsor, eds., Horwood, Chichester, U.K., vol. 1., 1, (1974).Google Scholar
  25. 25.
    J. Charvolin and A. Tardieu in “Liquid Crystals”, L. Liebert, ed., Solid State Physics Suppl., 14, 209, (1978).Google Scholar
  26. 26.
    G. Lindblom, K. Larsson, L. Johansson, K. Fontell and S. Forsn, J. Amer. Chem. Soc., 101, 5465, (1979).CrossRefGoogle Scholar
  27. 27.
    N. Kamenka, B. Lindman and B. Brun, Colloid Polym. Sci., 252, 144, (1974).CrossRefGoogle Scholar
  28. 28.
    J. Clifford and B. A. Pethica, Trans. Faraday Soc., 60, 216, (1964).CrossRefGoogle Scholar
  29. 29.
    J. Clifford and B. A. Pethica, J. Phys. Chem. 70, 3345, (1966).CrossRefGoogle Scholar
  30. 30.
    H. Fabre, Thesis, Montpellier, 1980. H. Fabre, N. Kamenka and B. Lindman, to be published.Google Scholar
  31. 31.
    Â. Johansson and B. Lindman in “Liquid Crystals and Plastic Crystals”, G. W. Gray and P. A. Winsor, eds., Horwood, Chichester, U.K., 1974, vol. 2, 195.Google Scholar
  32. 32.
    B. Lindman, N. Kamenka, T.-M. Kathopoulis, B. Brun and P.-G. Bilsson, J. Phys. Chem., 84, 2485 (1980).CrossRefGoogle Scholar
  33. 33.
    T. A. Bostock, M. P. McDonald, G. J. T. Tiddy and L. Waring, to be published.Google Scholar
  34. 34.
    L. E. Scriven in “Micellization, Solubilization, and Micro-emulsions”., K. L. Mittal, ed., Plenum Press, New York, vol. 2., 877, (1977).Google Scholar
  35. 35.
    M. Lagües. R. Ober and C. Taupin, J. de Physique Lettres, 39, 487, (1978).CrossRefGoogle Scholar
  36. 36.
    H. Saito and K. Shinoda, J. Colloid Interface Sci., 32, 647, (1970).CrossRefGoogle Scholar
  37. 37.
    Y. Talmon and S. Prager, J. Chem. Phys., 69, 517, (1978).CrossRefGoogle Scholar
  38. 38.
    M. Zulauf and H.F. Eicke, J. Phys. Chem., 83, 480, (1979).CrossRefGoogle Scholar
  39. 39.
    H.-F. Eicke, Pure Appl. Chem., 52, 1349, (1980).Google Scholar
  40. 40.
    R. Zana and J. Lang in “Solution Chemistry of Surfactants”, E. J. Fendler and K. L. Mittal, eds., Plenum Press, New York, in press.Google Scholar
  41. 41.
    P. Stilbs and M. E. Moseley, Chem. Scripta 13, 26, (1979).Google Scholar
  42. 42.
    P. Stilbs and M. E. Moseley, Chem. Scripta, 15, 176 (1980).Google Scholar
  43. 43.
    M. E. Moseley and P. Stilbs, Chem. Scripta, 15, 215 (1980).Google Scholar
  44. 44.
    P. Stilbs, M. E. Moseley and B. Lindman, J. Magn. Resonance, 40, 401 (1980).Google Scholar
  45. 45.
    M. E. Moseley, P. Stilbs and B. Lindman, to be published.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • B. Lindman
    • 1
  • N. Kamenka
    • 2
  • B. Brun
    • 2
  • P. G. Nilsson
    • 1
  1. 1.Physical Chemistry 1Chemical Center Lund UniversityLundSweden
  2. 2.Laboratoire des Interactions MoleculairesFaculté des Sciences, USTLMontpellierFrance

Personalised recommendations