The Microemulsion Concept in Nonpolar Surfactant Solutions

  • H.-F. Eicke


It appears indispensable in discussing our present knowledge regarding the so-called microemulsions to point to the most problematic and unsatisfactory situation connected with the microemulsion notion. There does not exist as yet an operational definition of the microemulsion concept which is likewise useful for water-in-oil and oil-in-water systems. The main confusion seems to be due to the fact that microemulsions were originally defined purely phenomenologically, i.e. according to the observation that homogeneous, transparent, and low viscous solutions can be formed with considerable amounts of water or oil dispersed in the antagonistic continuous components in the presence of suitable surfactants and (eventual) co-surfactants.


Hydrodynamic Radius Micellar Aggregate Surfactant Monolayer Average Hydrodynamic Radius Inverted Micelle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Th. G. Overbeek, Faraday Disc. Chem. Soc. 65, 7 (1978).CrossRefGoogle Scholar
  2. 2.
    K. Shinoda and S. Friberg, Adv. Colloid Interface Sci. 4, 281 (1975).CrossRefGoogle Scholar
  3. 3.
    L. E. Scriven, in Micellization, Solubilization, and Microemulsion (K. L. Mittal, edit.), Vol. 2, 877, Plenum Press, N.Y. 1977.Google Scholar
  4. 4.
    C. Wagner, Colloid and Polymer Sci. 254, 400 (1976).CrossRefGoogle Scholar
  5. 5.
    H. F. Eicke and P. Kvita, J. Colloid Interface Sci. in prep.Google Scholar
  6. 6.
    G. Zundel, “Hydration and Intermolecular Interaction”, Academic Press, New York 1969.Google Scholar
  7. 7.
    H. J. Emeléus and J. S. Anderson, Modern Aspects of Inorganic Chemistry, Rutledge and Kegan Paul Ltd., London, 386, (1960).Google Scholar
  8. 8.
    H. F. Eicke, J. Solution Chem. (1980/81) in press.Google Scholar
  9. 9.
    A. B. F. Duncan and J. A. Pople, Trans. Faraday, Soc. 49, 217, (1953).CrossRefGoogle Scholar
  10. 10.
    H. F. Eicke, and H. Christen, Heiv. Chim. Acta 61, 2258 (1978).CrossRefGoogle Scholar
  11. 11.
    H. F. Eicke, and J. Rehak, Hely. Chin. Acta 59, 2883 (1976).CrossRefGoogle Scholar
  12. 12.
    S. M. F. Tavernier, C. Vonk and R. Gijbels, J. Colloid Interface Sci. to appear (1980).Google Scholar
  13. 13.
    H. F. Eicke, and Z. Markovic, J. Colloid Interface Sci. 79, 151 (1981); Z. Markovic, Thesis, Univ. Basel 1980.Google Scholar
  14. 14.
    A. V. Levashov, V. I. Pantin and K. Martinek, Koll. Zh. (russ.) No. 3, 453 (1979).Google Scholar
  15. 15.
    M. Zulauf, and H. F. Eicke, J. Phys. Chem. 83 480 (1979).CrossRefGoogle Scholar
  16. 16.
    H. F. Eicke, and R. Kubik, Ber. Bunsenges. Phys. Chem. 84, 37 (1980).Google Scholar
  17. 17.
    H. F. Eicke, and K. St. Nitsche, Lett. to Edit., J. Colloid Interf. Sci., in preparation.Google Scholar
  18. 18.
    H. F. Eicke, J. Colloid Interface Sci. 68, 440 (1979).CrossRefGoogle Scholar
  19. 19.
    H. F. Eicke, Helv. Chim. Acta 62, 448 (1979).CrossRefGoogle Scholar
  20. 20.
    D. Dünnenberger, unpublished results.Google Scholar
  21. 21.
    H. F. Eicke, and H. Christen, Heiv. Chim. Acta 61, 2258 (1978).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • H.-F. Eicke
    • 1
  1. 1.Physikalisch-Chemisches InstitutUniversität BaselBaselSwitzerland

Personalised recommendations