Microemulsions pp 143-172 | Cite as

Alcohol Effects on Transitions in Liquid Crystalline Dispersions

  • P. K. Kilpatrick
  • F. D. Blum
  • H. T. Davis
  • A. H. Falls
  • E. W. Kaler
  • W. G. Miller
  • J. E. Puig
  • L. E. Scriven
  • Y. Talmon
  • N. A. Woodbury

Abstract

A surfactant can be defined as an amphiphilic compound that forms fluid microstructures with both polar and non-polar solvents. A single-tail surfactant with a straight-chain hydrophobic moiety of sufficient length forms micelles in water above a characteristic range of concentrations called the critical micelle concentration. Doubletail surfactants form micelles only when their hydrophobic chains are sufficiently short(l). Naturally occurring double-tail surfactants such as lecithins separate in a lamellar liquid crystalline phase in aqueous solution as concentration is increased. Synthetic double-tail surfactants have also been found to form lamellar liquid crystals at low concentrations in water. Both double- and single-tail surfactants form microemulsions when combined in certain proportions with water, hydrocarbons, and, often, salts and alcohols or other cosolvents. By microemulsion we mean a thermodynamically stable, microstructured fluid phase of variable composition that incorporates substantial amounts of oil, water and surfactants(2). With some nonionic surfactant systems, neither alcohols nor added electrolytes are necessary in the formulation of a microemulsion(3,4). However, most ionic surfactant-oil-water systems form stable nonequilibrium macroemulsions in the absence of alcohols or added salts. In all likelihood, these emulsions are stabilized by viscous liquid crystalline or mesomorphic films of low interfacial tension encapsulating the emulsion droplets(5). Salts moderate the long-range forces produced by the electrical double layers of the ionic surfactant head groups. The role of alcohols is not clear, although they probably serve as viscosity depressants by solvating the surfactant molecules and thus reducing regions of high local surfactant concentration such as are present in mesomorphic phases. Further work is clearly needed to elucidate the mechanisms responsible for stabilizing and destabilizing macroemulsions in microemulsion-forming systems.

Keywords

Liquid Crystal Lamellar Phase Isotropic Solution Lamellar Liquid Crystal Mesomorphic Phasis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. J. M. Tausk, J. Karmiggelt, C. Oudshoorn, and J. Th. G. Overbeck, Biophys. Chem., 1, 175 (1974).PubMedCrossRefGoogle Scholar
  2. 2.
    J. E. Puig, H. T. Davis, L. E. Scriven, and W. G. Miller, 1981, to be presented at 90th AIChE National Meeting, Houston, Texas, April 5–9, 1981.Google Scholar
  3. 3.
    S. Friberg, I. Buraczewska, and J. C. Ruvey in “Micellization, Solubilization, and Microemulsions”, Vol. 2, K. L. Mittal, Ed., Plenum Press, New York, 1977, p. 901.CrossRefGoogle Scholar
  4. 4.
    P. K. Kilpatrick, C. A. Gorman, H. T. Davis, W. G. Miller, and L. E. Scriven, manuscript in preparation.Google Scholar
  5. 5.
    S. Friberg, P. O. Jansson, and E. Cederberg, J. Coll.and Inter. Sci., 55, 614 (1976).CrossRefGoogle Scholar
  6. 6.
    E. I. Franses, H. T. Davis, W. G. Miller, and L. E. Scriven, Paper presented in the symposium on Chemistry of Oil Recovery at the 175th National Meeting of the American Chemical Society, Anaheim, Calif., March 13, 1978; ACS Symp. Ser. 1979Google Scholar
  7. 7.
    E. I. Franses, Ph.D. Thesis, University of Minnesota, June 1979.Google Scholar
  8. 8.
    Y. Talmon, H. T. Davis, L. E. Scriven, and E. L. Thomas, Rev. Sci. Inttr., 50, 698 (1979).CrossRefGoogle Scholar
  9. 9.
    Y. Talmon, Ph.D. Thesis, University of Minnesota, March 1979.Google Scholar
  10. 10.
    T. P. Russell, R. S. Stein, M. K. Kopp, R. E. Zedler, R. W. Hendricks, and J. S. Lin, 1979, ORNL-TM 6678, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830.Google Scholar
  11. 11.
    P. W. Schmidt, Acta Cryst., 19, 938 (1965).CrossRefGoogle Scholar
  12. 12.
    L. Magid, U.S. Dept. of Energy Quarterly Report on Chemicals for Enhanced Oil Recovery, Oak Ridge National Laboratory, Oak Ridge, Tennessee, 37830, July 1980, p. 23.Google Scholar
  13. 13.
    W. J. Benton and D. F. Evans, 1980, unpublished results.Google Scholar
  14. 14.
    J. E. Puig, H. T. Davis, W. G. Miller, and L. E. Scriven, 1980, unpublished results.Google Scholar
  15. 15.
    P. Mukerjee, K. J. Mysels, and C. I. Dulin, J. Physic. Chem., 62 1390 (1958).CrossRefGoogle Scholar
  16. 16.
    K. J. Mysels and R. J. Otter, J. Colloid Sci., 16, 474 (1961).CrossRefGoogle Scholar
  17. 17.
    C. Botre, V. L. Crescenzi, and A. Mele, J. Physic, Chem., 63, 650 (1959).CrossRefGoogle Scholar
  18. 18.
    L. Onsager, Physik Z., 27, 388 (1926).Google Scholar
  19. 19.
    E. I. Franses, J. F. Puig, Y. Talmon, W. G. Miller, L. E. Scriven, and H. T. Davis, J. Physic. Chem., 84, 1547 (1980).CrossRefGoogle Scholar
  20. 20.
    H. Gustaysson and B. Lindman, J. Amer. Chem. Soc., 97, 3923 (1975).CrossRefGoogle Scholar
  21. 21.
    H. Gustaysson and B. Lindman, J. Amer. Chem. Soc., 100, 4547 (1978).Google Scholar
  22. 22.
    F. Reiss-Husson and V. Luzzati, J. Physic. Chem. 68, 3504 (1964).CrossRefGoogle Scholar
  23. 23.
    A. Guinier and G. Fournet, “Small-Angle Scattering of X-Rays”, John Wiley and Sons, New York, 1955, Chapter 2.Google Scholar
  24. 24.
    L. E. Scriven, Nature, 263, 123 (1976) and in “Micellization, Solubilization, and Microemulsions”, Vol. 2, K. L. Mittal, Ed., Plenum Press, New York, 1977, p. 877.CrossRefGoogle Scholar
  25. 25.
    J. C. Hatfield, Ph.D. Thesis, University of Minnesota, March 1978.Google Scholar
  26. 26.
    M. Lagues, R. Ober, and C. Taupin, J. Physique Lett., 39, L-487 (1978).Google Scholar
  27. 27.
    B. Lindman, N. Kamenka, T. M. Kathopoulis, B. Brun, and P. G. Nilsson, J. Physic. Chem., 84, 2485 (1980).CrossRefGoogle Scholar
  28. 28.
    K. E. Bennett, J. C. Hatfield, H. T. Davis, C. W. Macosko, and L. E. Scriven, paper presented at the Industrial Sub-Committee of the Faraday Division of the Chemical Society’s meeting on “The Physical Chemistry of Microemulsions”, Sept. 15–16, 1980.Google Scholar
  29. 29.
    E. W. Kaler and S. Prager, presented at the 5th International Small-Angle Scattering Conference, Berlin, West Germany, Oct. 6–10, 1980, manuscript in preparation.Google Scholar

Copyright information

© Springer Science+Business Media New York 1982

Authors and Affiliations

  • P. K. Kilpatrick
    • 1
  • F. D. Blum
    • 1
  • H. T. Davis
    • 1
  • A. H. Falls
    • 1
  • E. W. Kaler
    • 1
  • W. G. Miller
    • 1
  • J. E. Puig
    • 1
  • L. E. Scriven
    • 1
  • Y. Talmon
    • 1
  • N. A. Woodbury
    • 1
  1. 1.Departments of Chemical Engineering and Materials Science and of ChemistryUniversity of MinnesotaMinneapolisUSA

Personalised recommendations