Advertisement

Lipoxins pp 93-106 | Cite as

Computed Conformational Analysis of Lipoxins and Their Ionic Complexes

  • Robert Brasseur
  • Charles N. Serhan
  • Michel Deleers

Abstract

The possible molecular conformations of four structurally and biologically different lipoxins derivatives were predicted by a systematic structure tree theoretical analysis. This method takes into account the London-Van der Waals energy of interaction, the electrostatic interaction, the rotation energy of the torsional angles and the energy of transfer through a possible lipid-water interface. Finally, the conformers derived from the structure tree and with a high probability of existence were submitted to the energy minimization procedure. The most probable conformers of lipoxin A: 5S,6R,15S-trihydroxy-7,9,13 trans-11 cis -eicosatetraenoic acid (LXA); 11 trans lipoxin A: 5S,6R,15S-trihydroxy-7,9,11,13 trans -eicosatetraenoic acid (lit-LXA); lipoxin B: 5S,14R 15S-trihydroxy-6,10,12 trans-8 cis -eicosatetraenoic acid (LXB) and 8 trans lipoxin B: 5S,14R,15S-trihydroxy- 6,8,10, 12 trans -eicosatetraenoic acid (8t-LXB) in their isolated form or when forming complexes with one calcium ion are presented.

The four isolated compounds lead to vastly different conformations. Lipoxin A can form the most globular conformer while lipoxin B seems to be slightly more extended. The all trans isomer of lipoxin B forms an extended conformer and 11 trans lipoxin A gives a fully extended molecule. Complexes of a pair of these compounds with one calcium ion were shown to lead to vastly different conformations. Both (LXA)2Ca and (LXB)2Ca form crumpled or extended structure, the LXA molecules being more wrapped around Ca2+ than LXB molecules. The (llt-LXA)2Ca and (8t-LXB)2Ca complexes present a high probability of extended conformations. Our description merely shows that the peculiar stereochemistry of these molecules lead to equilibria between conformers or to very static conformers, the flexibility and rigidity of which being probably relevant in view of their different biological activities.

Keywords

Torsional Angle Conformational Analysis Conformational Energy Eicosatetraenoic Acid Probable Configuration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Basak, S.C., Gierchen, D.P., Magnusson, V.R. and Harris, D.K., 1982, Structure activity relationship and pharmacokinetics: a comparative study of hydrophobicity, Van der Waals volume and topological parameters, IRCS Med. Sci. 10: 619.Google Scholar
  2. Brasseur, R., Deleers, M., Malaisse, W.J. and Ruysschaert, J.M. 1982, Conformational analysis of the calcium-A23187 complex at a lipid-water interface, Proc. Natl. Acad. Sci. USA, 79: 2895.PubMedCrossRefGoogle Scholar
  3. Brasseur, R., Deleers, M., and Malaisse, W.J., 1983a, Conformational analysis of the calcium antagonist Gallopamil, Biochem. Pharmacol.,32: 437.Google Scholar
  4. Brasseur, R., Deleers, M., Ruysschaert, J.M., and Malaisse, W. J., 198313, Conformational analysis of mixed monolayers of phorbol esters and phospholipids, Biochem. Int. 7:71.Google Scholar
  5. Brasseur, R., and Deleers, M., 1983, Theoretical study on conformation related activity of hypoglycemic sulfonylureas, Pharmacol. Res. Commun., 15: 901.Google Scholar
  6. Brasseur, R., Deleers, M., and Ruysschaert, J.M., 1984, Sequence of ionophore conformation changes induced by a simulated membrane-water interface, Biosc. Rpts.,4: 651.CrossRefGoogle Scholar
  7. Brasseur, R., and Deleers, M., 1984, Conformational analysis of 6-cis and 6-trans leukotrienes-Ba-Ca2+ complexes, Proc. Natl. Acad. Sci. USA, 81: 3370.Google Scholar
  8. Brasseur, R., Deleers, M., and Ruysschaert, J.M., 1986, Localization and mode of organization of amphiphilic molecules at a lipid-water interface: a predictional approach, J. Colloid Interface Sci., 114: 277.Google Scholar
  9. Brasseur, R., 1986, Theoretical analysis of membrane molecular organization, J. Molec. Graphics, 4: 117.Google Scholar
  10. Brasseur, R., Deleers, M., Ruysschaert, J.M., Samuelsson, B., and Serhan, C.N., 1987, Conformational analysis of lipoxin A, lipoxin B and their isomers, Submitted.Google Scholar
  11. Dahlen, S.E., Rand, J., Serhan, C.N., Bjrk, J., and Samuelsson, B., 1987, Biological activities of lipoxin A includes lung strip contraction and dilation of arterioles in vivo, Acta Physiol. Scand., submitted.Google Scholar
  12. DeCoen, J.L., and Ralston, E., 1977, Theoretical conformational analysis of Asnl,Val5 angiotensin, Biopol.,73: 38.Google Scholar
  13. Deleers, M., Brasseur, R., Ruysschaert, J.M., and Malaisse, W. J.,1983a, Conformational analysis of phorbol esters at a simulated membrane water interface, Biophys. Chem., 17: 313.Google Scholar
  14. Deleers, M., Brasseur, R., and Malaisse, W.J., 1983b, Stoichiometry of calcium binding by hypoglycemic sulfo-nyl ureas, Res. Commun. Chem. Pathol. Pharmacol., 42: 181.Google Scholar
  15. Deleers, M., Brasseur, R., and Malaisse, W.J., 1983c, Calcium transport by a beta-diketone in model membranes, Chem. Phys. Lipids, 33: 11.Google Scholar
  16. Deleers, M., Grognet, P., and Brasseur, R., 1985, Structural considerations for calcium ionophoresis by prostaglandins, Biochem. Pharmacol., 34: 3831.Google Scholar
  17. Duax, W.L., Smith, G.D., Griffin, J.F. and Portoghese,P., 1983, Methadone conformation and opioid activity, Science,220: 417.Google Scholar
  18. Hansson, A., Serhan, C.N., Haeggstr?m, J., Ingelman-Sundberg, M., and Samuelsson, B., 1986, Activation of protein kinase C by lipoxin A and other eicosanoids: intracellular action of oxygenation products of arachidonic acid, Biochem. Biophys. Res. Commun., 134: 1215.Google Scholar
  19. Hopfinger, A.J., 1973, “Conformational properties of macromolecules”, Academic Press, New York.Google Scholar
  20. Liquori, A.M., Giglio, E., and Mozzarella, L., 1968, Van der Waals interactions and the packing of molecular crystals, Nuovo Cimento, 55: 475.Google Scholar
  21. Liquori, A.M., 1969, The stereochemical code and the logic of a protein molecule, Quat. Rev. Biophys, 2: 65.Google Scholar
  22. Motherwell, S., and Clegg, W., 1978, “Pluto program”, University of Cambridge, Cambridge University Press, London.Google Scholar
  23. Needleman, P., Turk, J., Jakschik, B.A., Morrison, A.R., and Lefkowith, J.B., 1986, Arachidonic acid metabolism, Ann. Rev. Biochem, 55: 69.Google Scholar
  24. Nelder, J.A., and Mead, R., 1965, A simplex method for function minimization, Computer J., 7: 308.Google Scholar
  25. Ralston, E., and DeCoen, J.L., 1974, Folding of polypeptide chains induced by the amino side chains, J. Mol. Biol., 83: 393.Google Scholar
  26. Ralston, E., DeCoen, J.L., and Walter, R., 1974, Tertiary structure of H-Pro-Leu-Gly-NH2, the factor that inhibits release of melanocyte stimulating hormone, derived by conformational energy calculations, Proc. Natl. Acad. Sci. USA, 71:1142.Google Scholar
  27. Ramstedt, U., Ng, J., Wigzell, H., Serhan, C.N., Samuelsson, B., 1985, Action of novel eicosanoids lipoxin A and B on human natural killer cell cytotoxicity: effects on intracellular cAMP and target cell binding,J. Immunol., 135: 3434.Google Scholar
  28. Ramstedt, U., Serhan, C.N., Nicolaou, K.C., Weber, S.E., Wigzell, H., and Samuelsson, B., 1987, Lipoxin A induced inhibition of natural killer cells: studies on stereo-specificity and mode of action, J. Immunol., 138: 266.Google Scholar
  29. Rebek, J., 1987, Model studies in molecular recognition, Science, 235: 1478.Google Scholar
  30. Samuelsson, B., 1983, Leukotrienes: mediators of immediate hypersensitivity reaction and inflammation, Science, 220: 568.Google Scholar
  31. Serhan, C.N., Fridovitch, J., Goetzl, E., Dunham, P.B. and Weissmann, G., 1982, Leukotriene B4 and phosphatidic acid are calcium ionophores, J. Biol. Chem., 257: 4746.Google Scholar
  32. Serhan, C.N., Hamberg, M., and Samuelsson, B., 1984a, Trihydroxytetraenes: a novel series of compounds formed from arachidonic acid in human leukocytes, Biochem. Biophys. Res. Commun., 118: 943.Google Scholar
  33. Serhan, C.N., Ramberg, M., and Samuelsson, B., 1984b, Lipoxins: novel series of biologically active compounds formed from arachidonic acid in human leukocytes, Proc. Natl. Acad. Sci. USA, 81: 5335.Google Scholar
  34. Serhan, C.N., Hamberg, M., and Samuelsson, B., 1985, Lipoxins, a novel series of biologically compounds, in: “Prostaglandins, leukotrienes and lipoxins” Bailey Ed. New York.Google Scholar
  35. Serhan, C.N., Hamberg, M., Samuelsson, B., Morris, J., and Wishka, D.J., 1986a, On the stereochemistry and biosynthesis of lipoxin B, Proc. Natl. Acad. Sci. USA, 83: 1983.Google Scholar
  36. Serhan, C.N., Nicolaou, K.C., Webber, S.E., Veale, C.A., Dahlen, S.E., Puutsinen, T.J., and Samuelsson, B., 1986b, Lipoxin A: stereochemistry and biosynthesis, J. Biol. Chem., 261: 16340.Google Scholar
  37. Tanford, C., 1973, “The hydrophobic effects. Formation of micelles and biological membranes ”, John Wiley and sons, New York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Robert Brasseur
    • 1
  • Charles N. Serhan
    • 2
  • Michel Deleers
    • 3
  1. 1.Macromolecules at Interfaces, CP 206/2Brussels Free UniversityBrusselsBeligium
  2. 2.Hematology Division of the Brigham and Women’s Hospital and Harvard Medical SchoolBostonUSA
  3. 3.UCB Pharmaceutical SectorResearch CenterBraine l’AlleudBelgium

Personalised recommendations