Lipoxins pp 131-136 | Cite as

The Glomerular Physiology of Lipoxin-A

  • Kamal F. Badr


A number of renal diseases, such as acute and chronic glomerulonephritis, acute interstitial nephritis, allograft rejection, and others are characterized by the presence inflammatory cellular infiltrates consisting, at various stages, of neutrophils, macrophages, monocytes, eosinophils, and lymphocytes. In addition, these disease processes are often accompanied by impairment of glomerular perfusion, filtration, and permselectivity functions. Despite much controversy as to the mediator systems involved in the initiation and perpetuation of these glomerular functional abnormalities, consensus has emerged as to the central role of leukocyte-derived biologically active cytokines1. In this regard, lipid-derived mediators, including platelet activating factor and the cyclooxygenase and lipoxygenase (LO) products of arachidonate metabolism have received particular attention. An understanding of the role played by these locally released compounds in the pathophysiology of glomerular injury can only result from a close integration of the best available bioanalytic and physiologic technologies, and the application of both approaches to experimental disease models, in conjunction with selective antagonism of specific mediators through receptor antagonists and enzyme inhibitors. Using glomerular micropuncture techniques, we have identified the responses of the glomerular microcirculation to peptidyl leukotrienes2,3 and, utilizing selective antagonists, proposed a role for these compounds in mediating the reductions in renal plasma flow and glomerular filtration, as well as the induction of proteinuria, in endotoxin- and anti-glomerular basement membrane antibody-induced glomerular injury4,5. In more recent studies6, we have examined the effects of exogenously administered lipoxin A (LX-A) on the glomerular microcirculation in the rat. Our results indicate that, in sharp contrast to sulfidopeptide LTs, the predominant action of LX-A is to increase renal perfusion. This response appears to be evoked by selective reduction in preglomerular resistance with a consequent augmentation of single nephron and whole kidney glomerular filtration rate.


Left Renal Artery Acute Interstitial Nephritis Colloid Osmotic Pressure Arteriolar Resistance Single Nephron Glomerular Filtration Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. B. Wilson and F. J. Dixon, Renal response to immunological injury, in “The Kidney,” B. M. Brenner and F. C. Rector Jr., eds. Saunders, Phila. (1986).Google Scholar
  2. 2.
    K. F. Badr, C. Baylis, J. M. Pfeffer, M. A. Pfeffer, R. J. Soberman, R. A. Lewis, K. F. Austen, E. J. Corey, and B. M. Brenner, Renal and systemic hemodynamic responses to intravenous infusion of leukotriene C4 in the rat, Circ. Res. 54:492, (1984).Google Scholar
  3. 3.
    K. F. Badr, B. M. Brenner, and I. Ichikawa. Effects of leukotriene D4 on glomerular dynamics in the rat. Am. J. Physiol. In Press.Google Scholar
  4. 4.
    K. F. Badr, V. E. Kelley, H. G. Rennke, and B. M. Brenner, Roles for thromboxane A2 and leukotrienes in endotoxin-induced acute renal failure, Kidney Int. 30: 474, (1986).Google Scholar
  5. 5.
    K. F. Badr, A. Gung, G. F. Schreiner, M. Wasserman, and I. Ichikawa, Reversal of antiglomerular basement membrane antibody-induced fall in the glomerular ultrafiltration coefficient by the leukotriene D4 antagonist SKF 104353. Kidney Int. 31:363, (1987) (Abstr.).Google Scholar
  6. 6.
    K. F. Badr, C. N. Serhan, K. C. Nicolaou, and B. Samuelsson, The action of lipoxin-A on glomerular microcirculatory dynamics in the rat, Biochem. Biophys. Res. Commun. In Press.Google Scholar
  7. 7.
    C. N. Serhan, M. Hamberg, and B. Samuelsson, Lipoxins: Novel series of biologically active compounds formed from arachidonic acid in human leukocytes, Proc. Nat’l Acad. Sci. U.S.A. 81:5335, (1984).Google Scholar
  8. 8.
    C. N. Serhan, K. C. Nicolaou, S. E. Webber, C. A. Veale, S-E Dahlen, T. J. Puustinen, and B. Samuelsson, Lipoxin A: Stereochemistry and biosynthesis. J. Biol. Chem. 261:16340 (1986).Google Scholar
  9. 9.
    K. C. Nicolaou, C. A. Vea1e, S. E. Webber, and H. Katerinopoulos, Stereocontrolled total synthesis of lipoxins A, J. Amer. Chem. Soc. 107:7515, (1985).CrossRefGoogle Scholar
  10. 10.
    I. Ichikawa, D. A. Maddox, M. G. Cogan, and B. M. Brenner, Dynamics of glomerular ultrafiltration in euvolemic Munich-Wistar rats, Renal Physiol. 1: 121, (1978).Google Scholar
  11. 11.
    W. M. Deen, J. L. Troy, C. R. Robertson, and B. M. Brenner, Dynamics of glomerular ultrafiltration in the rat. IV. Determination of the ultrafiltration coefficient, J. Clin. Invest. 52:1500, (1973).PubMedCrossRefGoogle Scholar
  12. 12.
    G. G. Vurek, and S. E. Pegram, Fluorometric method for the determination of nanogram quantities of inulin, Anal. Biochem. 16:409, (1966).Google Scholar
  13. 13.
    J. Fuhr, J. Kazmaczyk, and C. D. Kruttgen, Eine einfache colorimetrische Methode zur Inulinbestimmung fur Nieren-Clearanceuntersuchungen bei Stoffwechselgesunden und Diabetikern, Klin. Wochhenschr. 33:729, (1955).Google Scholar
  14. 14.
    J. W. Viets, W. M. Deen, J. L. Troy, and B. M. Brenner, Determination of serum protein concentration in nanoliter blood samples using fluorescamine or o-phthaldehyde, Anal. Biochem. 88:513, (1978).PubMedCrossRefGoogle Scholar
  15. 15.
    A. Rosenthal, and C. R. Pace-Asciak, Potent vasoconstriction of the isolated perfused kidney by leukotrienes C4 and D4, Can. J. Pharmacol. 61:325, (1983).Google Scholar
  16. 16.
    R. Barnett, P. Goldwasser, L. A. Scharschmidt, and D. Schlondorff, Effects of leukotrienes on isolated rat glomeruli and cultured mesangial cells, Amer. Jour. Physiol. 19:F838, (1986).Google Scholar
  17. 17.
    M. Simonson and M. J. Dunn, Leukotriene C4 and D4 contract rat glomerular mesangial cells, Kidney Intern. 30: 524, (1986).Google Scholar
  18. 18.
    R.Ardaillou, L. Baud, and J. Sraer, Leukotrienes and other lipoxygenase products of arachidonic acid synthesized in the kidney, Amer. J. Med. 81:(2B):12, (1986).PubMedCrossRefGoogle Scholar
  19. 19.
    R. J. Soberman, T. W. Harper, D. Betteridge, R. A. Lewis, and K. F. Austen. Characterization and separation of the arachidonic acid 5-lipoxygenase and linoleic acid w-6 lipoxygenase (arachidonic acid 15-lipoxygenase) of human polymorphonuclear leukocytes, J. Biol. Chem. 260:450, (1985).Google Scholar
  20. 20.
    J. Y. Vanderhoek, M. T. Karmin, and S. L. Ekborg, Endogenous hydroxyeicosatetraenoic acids stimulate the human polymorphonuclear leukocyte 15-lipoxygenase pathway, J. Biol. Chem. 260:15482, (1985).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1988

Authors and Affiliations

  • Kamal F. Badr
    • 1
  1. 1.Renal Division, Department of MedicineVanderbilt UniversityNashvilleUSA

Personalised recommendations