Ionic Liquids pp 127-143 | Cite as

Acid-Base Properties of Concentrated Electrolyte Solutions

  • John A. Duffy
  • Malcolm D. Ingram


Some metal salts are very soluble in water and it is possible to obtain solutions where the salt : water ratio is, for example, 1 : 6 or 1 : 4 or even lower. Indeed, it is sometimes possible to obtain such solutions simply by heating the solid salt hydrate, for example, CaCl2·6H20 melts to a clear liquid at 29.9°C. Some of these solutions possess remarkable chemical properties on account of their high acidity,1–3 and it has been argued by the present authors3 that this acidity can be predicted on the basis of calculations using the “optical basicity” approach. In this chapter we shall discuss in more detail why it is that concentrated salt solutions should exhibit acidic properties and attempt to interpret their behavior in the wider context of strong protonic acids.


Concentrate Solution Acidity Function Optical Basicity Proton Chemical Shift Conjugate Base 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. J. Sare, C. T. Moynihan, and C. A. Angell, J. Phys. Chem. 77, 1869 (1973).CrossRefGoogle Scholar
  2. 2.
    J. A. Duffy and M. D. Ingram, Inorg. Chem. 16, 2988 (1977).CrossRefGoogle Scholar
  3. 3.
    J. A. Duffy and M. D. Ingram, Inorg. Chem. 17, 2798 (1978).CrossRefGoogle Scholar
  4. 4.
    J. A. Duffy and M. D. Ingram, J. Am. Chem. Soc. 93, 6448 (1971).CrossRefGoogle Scholar
  5. 5.
    J. Wong and C. A. Angell, Glass Structure by Spectroscopy, Marcel Dekker, New York (1976), pp. 182–185.Google Scholar
  6. 6.
    J. A. Duffy and M. D. Ingram, J. Chem. Soc. Chem. Comm., 635 (1973).Google Scholar
  7. 7.
    J. A. Duffy and M. D. Ingram, J. Inorg. Nucl. Chem. 37, 1203 (1975).CrossRefGoogle Scholar
  8. 8.
    J. A. Duffy and M. D. Ingram, J. Inorg. Nucl. Chem. 38, 1831 (1976).CrossRefGoogle Scholar
  9. 9.
    J. A. Duffy and M. D. Ingram, J. Non-Crest. Solids 21, 373 (1976).ADSCrossRefGoogle Scholar
  10. 10.
    J. W. Larson and L. G. Hepler, in Solute-Solvent Interactions,Vol. 1, Eds. J. F. Coetzee and C. D. Ritchie, Marcel Dekker, New York (1969), Chap. 4.Google Scholar
  11. 11.
    L. P. Hammett, Physical Organic Chemistry, 2nd ed., McGraw-Hill, New York (1970), pp. 263–313.Google Scholar
  12. 12.
    N. G. Zarakhani and M. I. Vinnik, Russ. J. Phys. Chem. 36, 483 (1962).Google Scholar
  13. 13.
    L. Ben-Dor and R. Margalith, Inorg. Chim. Acta 1, 49 (1968).CrossRefGoogle Scholar
  14. 14.
    C. Walling, J. Am. Chem. Soc. 72, 1164 (1950).CrossRefGoogle Scholar
  15. 15.
    T. Takeshita, R. Ohnishi, T. Matsui, and K. Tanabe, J. Phys. Chem. 69, 4077 (1965).CrossRefGoogle Scholar
  16. 16.
    J. A. Duffy, J. Chem. Soc. faraday Trans. 1, 75, 1606 (1979).Google Scholar
  17. 17.
    J. H. Binks and J. A. Duffy, J. Non-Crvst. Solids,(1980) in press.Google Scholar
  18. 18.
    R. D. Dyer, R. M. Frono, M. D. Schiavelli, and M. D. Ingram, J. Phys. Chem. (1980) in press.Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • John A. Duffy
    • 1
  • Malcolm D. Ingram
    • 1
  1. 1.Department of ChemistryThe UniversityOld AberdeenScotland

Personalised recommendations