Dead Sea Brines: Natural Highly Concentrated Salt Solutions

  • Y. Marcus


The Dead Sea is located in the lowest basin on the surface of the earth, near the northern end of the Great Syro-African Rift. Its surface is at a mean elevation of —395 m, with an approximate length of 80 km and width of 15 km, its surface area being about 1000 km2. It consists of a deep northern basin having a maximum depth of about 400 m, and a shallow southern basin, of average depth of only 3 m. This latter basin has suffered considerable change in recent years through both climatic and man-made causes; its eastern half has almost dried up completely, while its western half is a series of solar salt pans. Recent aerial photographs from satellites show a southern contour line quite different from those appearing in common maps (Figure 1).


Gibbs Free Energy Activity Coefficient Pair Correlation Function Binary Solution Hydration Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Neev and K. O. Emery, Isr. Geol. Surv. Bull. 41, 1 (1967).Google Scholar
  2. 2.
    A. Lehrman, Geochim. Cosmochim. Acta 31, 2309 (1967).ADSCrossRefGoogle Scholar
  3. 3.
    Y. Marcus, Geochim. Cosmochim. Acta 41, 1739 (1977).ADSCrossRefGoogle Scholar
  4. 4.
    M. H. Lietzke and R. W. Stoughton, J. Solution Chem. 1, 299 (1972); J. Inorg. Nucl. Chem. 36, 1315 (1974).Google Scholar
  5. 5.
    M. H. Lietzke and R. W. Stoughton, J. Phys. Chem. 66, 508 (1962).CrossRefGoogle Scholar
  6. 6.
    D. Saad, Ph.D. thesis, Hebrew University of Jerusalem, 1978; D. Saad, J. Padova, and Y. Marcus, J. Solution Chem. 4, 983 (1975); D. Saad and J. Padova, J. Solution Chem. 6, 191 (1977); J. Padova, D. Saad, and D. Rosenzweig, J. Solution Chem. 6, 309 (1977).Google Scholar
  7. 7.
    P. J. Reilley, R. H. Wood, and R. A. Robinson, J. Phys. Chem. 75, 1305 (1971).CrossRefGoogle Scholar
  8. 8.
    G. Scatchard, R. M. Rush, and J. S. Johnson, J. Phys. Chem. 74, 3786 (1970).CrossRefGoogle Scholar
  9. 9.
    G. Scatchard, J. Am. Chem. Soc. 83, 2636 (1961); R. M. Rush and J. S. Johnson, J. Phys. Cheer 72, 767 (1968).Google Scholar
  10. 10.
    K. S. Pitzer and J. J. Kim, J. Am. Chem. Soc. 96, 5701 (1974).CrossRefGoogle Scholar
  11. 11.
    Y. Marcus, Introduction to Liquid State Chemistry, Wiley, Chichester (1977), Chap. 6, pp. 247–249, and Appendix 6. 2.Google Scholar
  12. 12.
    K. S. Pitzer and G. Mayoraga, J. Phys. Chem. 77, 2300 (1973).CrossRefGoogle Scholar
  13. U.S. National Bureau of Standards, Technical Notes TN-270–3 (1968). TN-270–6 (1971).Google Scholar
  14. 14.
    JANAF Thermochem. Tables, 2nd ed., NSRDS-NBS-37 (1971).Google Scholar
  15. 15.
    V. I. Voznesenskaya, in Vop. Fir. Khim. Rastuoror Elektrolit., Ed. G. I. Mikulin, Khimiya, Leningrad (1968), pp. 172–201.Google Scholar
  16. 16.
    D. A. Johnson, Some Thermodynamic Aspects of Inorganic Chemistry, Cambridge University, Cambridge, England (1968).Google Scholar
  17. 17.
    S. Takegami, Mem. Coll. Sci. Kyoto Imp. Unit’. 4, 317 (1921).Google Scholar
  18. 18.
    N. S. Kurnakov and S. F. Zemkuznys, Z. Anorg. Chem. 140, 153 (1924). (Quoted also in Gmelins Handbuch der Anorganische Chemie, 8th ed., Anhangsband K, 1942, Berlin, Verlag Chemie G.M.B.H., Ergänzungsband, 1970, Weinheim/Bergstz, Verlag Chemie G.M.B.H. )Google Scholar
  19. 19.
    Y. W. Lee, Master’s thesis, University of Mississippi, 1969.Google Scholar
  20. 20.
    D. K. Reddy, Quoted by J. C. Dhawan, Ph.D. thesis, University of Mississippi, 1974.Google Scholar
  21. 21.
    I. C. Juan, Master’s thesis, University of Mississippi, 1966.Google Scholar
  22. 22.
    W. B. Lee and A. C. Egerton, J. Chem. Soc. 123, 706 (1923).CrossRefGoogle Scholar
  23. 23.
    N. S. Kurnakov, D. P. Manoev, and N. A. Osokoreva, Kali 2, 25 (1932).Google Scholar
  24. 24.
    M. R. Bloch and J. Schnerb, Bull. Res. Counc. Isr. 3, 151 (1953).Google Scholar
  25. 25.
    A. B. Zdanovskii, quoted in A. Lehrman, Geochim. Cosmochim. Acta 31, 2317 (1967).Google Scholar
  26. 26.
    G. W. Brady and J. T. Krause, J. Chem. Phys. 27, 304 (1957); G. W. Brady, J. Chem. Phys. 28, 464 (1958).ADSCrossRefGoogle Scholar
  27. 27.
    R. M. Lawrence and R. F. Kruh, J. Chem. Phys. 47, 4758 (1967).ADSCrossRefGoogle Scholar
  28. 28.
    J. N. Albright, J. Chem. Phys. 56, 3783 (1972).ADSCrossRefGoogle Scholar
  29. 29.
    J. E. Enderby, R. A. Howe, and W. S. Howells, Chem. Phys. Lett. 21, 105 (1973); J. E. Enderby, Proc. R. Soc. London Ser. A 345, 107 (1975).Google Scholar
  30. 30.
    A. H. Narten, F. Vaslow, and H. A. Levy, J. Chem. Phys. 58, 5017 (1973).ADSCrossRefGoogle Scholar
  31. 31.
    J. L. Friedman, Ionic Solution Theory, Wiley-Interscience, New York (1962).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Y. Marcus
    • 1
  1. 1.Department of Inorganic and Analytical ChemistryThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations