A Direct Correspondence between Spectroscopic Measurements and Electrochemical Data and Theories

A Linear Relationship up to 10 mol dm−3, Precise Madelung Constants from Spectral Shift Data, and Correlations with Thermodynamic Parameters
  • Trevor R. Griffiths
  • Ranmuthu H. Wijayanayake


Spectroscopic measurements of aqueous electrolyte solutions have been made for nearly 50 years, and electrochemical measurements for very much longer. Although some relationships between infrared measurements of vibrational bands and electrochemical data have at times been noted, no relationships have, to our knowledge, so far been reported for chargetransfer-to-solvent (CTTS) spectra. Further, all the previous relationships have not sought to interrelate the theoretical understanding of the nature of the transition with that of electrochemical measurements. In this chapter we report and discuss such a relationship, and show that an all-embracing account is now available, which extends from infinitely dilute, through saturated salt solutions, to, in principle, the anhydrous salts.


Activity Coefficient Coulombic Interaction Spectral Shift Iodine Atom Cube Root 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Smith and M. C. R. Symons, Trans. Faraday Soc. 54, 338 (1958).CrossRefGoogle Scholar
  2. 2.
    J. Jortner, B. Raz, and G. Stein, Trans. Faraday Soc. 56, 1273 (1960).CrossRefGoogle Scholar
  3. 3.
    D. Myerstein and A. Treinin, J. Phys. Chem. 66, 446 (1962).CrossRefGoogle Scholar
  4. 4.
    R. Platzmann and J. Franck, Z. Phys. 138, 411 (1954).ADSCrossRefGoogle Scholar
  5. 5.
    M. Smith and M. C. R. Symons, Trans. Faraday Soc. 54, 346 (1958).CrossRefGoogle Scholar
  6. 6.
    G. Stein and A. Treinin, Trans. Faraday Soc. 55, 1086, 1091 (1959).CrossRefGoogle Scholar
  7. 7.
    M. Smith and M. C. R. Symons, Discuss Faraday Soc. 24, 206 (1957).CrossRefGoogle Scholar
  8. 8.
    B. S. Gourary and F. J. Adrian, Solid State Phys. 10, 127 (1960).CrossRefGoogle Scholar
  9. 9.
    M. C. R. Symons and W. T. Doyle, Quart. Rev. 14, 62 (1960).CrossRefGoogle Scholar
  10. 10.
    M. J. Blandamer and M. F. Fox, Chern. Rev. 70, 59 (1970).CrossRefGoogle Scholar
  11. 11.
    M. Anbar and E. J. Hart, J. Phys. Chem. 69, 1244 (1965).CrossRefGoogle Scholar
  12. 12.
    W. Gottschall and E. J. Hart, J. Phys. Chem. 71, 2102 (1967).CrossRefGoogle Scholar
  13. 13.
    M. C. R. Symons, Chem. Soc. Rev. 5, 337 (1976).CrossRefGoogle Scholar
  14. 14.
    C. K. Jorgensen, Solid State Phys. 13, 375 (1962).CrossRefGoogle Scholar
  15. 15.
    C. K. Jorgensen, Adv. Chem. Phys. 5, 33 (1963).Google Scholar
  16. 16.
    C. K. Jorgensen, Orbitals in Atoms and Molecules, Academic, London (1962).Google Scholar
  17. 17.
    C. K. Jorgensen, International Review of Halogen Chemistry, Vol. 1, Academic, London (1967).Google Scholar
  18. 18.
    D. B. Siano and D. E. Metzler, J. Chem. Soc. Faraday Trans. 2 68, 2042 (1972).CrossRefGoogle Scholar
  19. 19.
    G. Stein and A. Treinin, Trans. Faraday Soc. 56, 1393 (1960).CrossRefGoogle Scholar
  20. 20.
    H. E. Wirth, J. Am. Chem. Soc. 39, 2549 (1937).Google Scholar
  21. 21.
    H. E. Wirth, J. Am. Chem. Soc. 42, 1128 (1940).Google Scholar
  22. 22.
    H. E. Wirth and H. E. Collier, J. Am. Chem. Soc. 72, 5292 (1950).CrossRefGoogle Scholar
  23. 23.
    M. J. Blandamer, T. R. Griffiths, and K. J. Wood, J. Cheni. Soc. Chem. Commun. 933, (1969).Google Scholar
  24. 24.
    P. Debye and E. Hückel, Phys. Z. 24, 185 (1923).zbMATHGoogle Scholar
  25. 25.
    J. C. Ghosh, J. Chem. Soc. 113, 449 (1918).CrossRefGoogle Scholar
  26. 26.
    L. W. Bahe, J. Phys. Chem. 76, 1062, 1608 (1972).Google Scholar
  27. 27.
    I. Ruff, J. Chem. Soc. Faraday Trans. 1 73, 1858 (1977).Google Scholar
  28. 28.
    M. H. Lietzke, R. W. Stoughton, and R. M. Fuoss, Proc. Natl. Acad. Sci. USA 59, 39, (1968).ADSCrossRefGoogle Scholar
  29. 29.
    R. M. Fuoss and L. Onsager, Proc. Natl. Acad. Sci. USA 47, 818 (1961).ADSCrossRefGoogle Scholar
  30. 30.
    N. Bjerrum, Z. Elektrochem. 24, 321 (1918).Google Scholar
  31. 31.
    N. Bjerrum, Z. Anorg. Chem. 109, 275 (1920).Google Scholar
  32. 32.
    H. S. Frank and P. T. Thompson, in The Structure of Electrolytic Solutions, Ed. W. J. Hamer, Wiley, New York (1959), pp. 113–134.Google Scholar
  33. 33.
    E. Glueckauf, in The Structure of Electrolytic Solutions, Ed. W. J. Hamer, Wiley, New York (1959), Part 7, pp. 97–112.Google Scholar
  34. 34.
    G. W. Murphy and E. W. Smith, J. Chem. Phys. 31, 1086 (1959).CrossRefGoogle Scholar
  35. 35.
    M. A. Devanathan, J. Sci. Ind. Res. India B 20, 256 (1961).Google Scholar
  36. 36.
    P. Mitra, D. V. S. Jain, and M. H. Kapoor, Indian J. Chem. 6, 391 (1968).Google Scholar
  37. 37.
    E. Glueckauf, Trans. Faraday Soc. 51, 1235 (1955).CrossRefGoogle Scholar
  38. 38.
    C. A. Angell, J. Phys. Chem. 70, 3988 (1966).CrossRefGoogle Scholar
  39. 39.
    C. A. Angell, E. J. Sare, and R. D. Bressel, J. Phys. Chem. 71, 2759 (1967).CrossRefGoogle Scholar
  40. 40.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959), p. 491.Google Scholar
  41. 41.
    K. J. Wood, Ph.D. thesis, Leeds University (1970).Google Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • Trevor R. Griffiths
    • 1
  • Ranmuthu H. Wijayanayake
    • 1
  1. 1.Department of Inorganic and Structural ChemistryThe UniversityLeedsEngland

Personalised recommendations