Skip to main content

Transport Properties in Concentrated Aqueous Electrolyte Solutions

  • Chapter
Ionic Liquids

Abstract

Concentrated electrolyte solutions have become fashionable again. That they were unpopular for so long owes much to the advent of the Debye-Hückel-Onsager theory in the 1920s. For several decades thereafter the electrolyte solution spotlight was firmly fixed on the D-H-O model and ever more dilute solutions became the rage. It is true that in the late 19th and early 20th centuries the study of concentrated ionic solutions had been quite respectable but for various reasons much of the data then gathered is now of limited value. A selection of more recent experimental data is presented in Section 3 of this chapter and may serve as a guide to future work. We shall consider here only two-component systems, i.e., one electrolyte plus water. Fortunately the revival of interest in highly concentrated electrolyte solutions has transformed our knowledge not only empirically but also theoretically. A good illustration of the present thriving nature of the field is shown by the fact that one recent year, 1977, saw the appearance of two new theories, one dealing with conductance, transference and diffusion and the other concerned with viscosities. The state of the theoretical scene up to the beginning of 1979 is reviewed in the following section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Jones and M. Dole, J. Am. Chem. Soc. 51, 2950 (1929).

    Article  Google Scholar 

  2. R. H. Stokes and R. Mills, Viscosity of Electrolytes and Related Properties, Pergamon, Oxford (1965).

    Google Scholar 

  3. J.-C. Justice, J. Solut. Chem., 7, 859 (1978).

    Article  Google Scholar 

  4. B. F. Wishaw and R. H. Stokes, J. Am. Chem. Soc. 76, 2065 (1954).

    Article  Google Scholar 

  5. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959).

    Google Scholar 

  6. R. H. Stokes, in The Structure of Electrolytic Solutions,Ed. W. J. Hamer, Wiley, New York (1959), Chap. 20.

    Google Scholar 

  7. J. Salvinien, B. Brun, and J. Molenat, J. Chim. Phys. Suppl., October, 19 (1969).

    Google Scholar 

  8. D. P. Sidebottom and M. Spiro, J. Chem. Soc. Faraday Trans. 1 69 1287 (1973).

    Article  Google Scholar 

  9. L. G. Longsworth, J. Am. Chem. Soc. 54, 2741 (1932).

    Article  Google Scholar 

  10. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959), Chap. 11, Table 11. 7.

    Google Scholar 

  11. R. H. Stokes and R. A. Robinson, J. Am. Chem. Soc. 70, 1870 (1948).

    Article  Google Scholar 

  12. J. Braunstein, in Ionic Interactions: From Dilute Solutions to Fused Salts,Vol. I, Ed. S. Petrucci, Academic, New York (1971), Chap. 4.

    Google Scholar 

  13. R. H. Stokes and R. A. Robinson, J. Solut. Chem. 2, 173 (1973).

    Article  Google Scholar 

  14. M. H. Lietzke, R. W. Stoughton, and R. M. Fuoss, Proc. Natl. Acad. Sci. USA 59, 39 (1968).

    Article  ADS  Google Scholar 

  15. I. Ruff, J. Chem. Soc. Faraday Trans. II 73, 1858 (1977).

    Article  Google Scholar 

  16. C. A. Angell and K. J. Rao, J. Chem. Phys. 57, 470 (1972).

    Article  ADS  Google Scholar 

  17. S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).

    Google Scholar 

  18. C. T. Moynihan, in Ionic Interactions: From Dilute Solutions to Fused Salts, Vol. 1, Ed. S. Petrucci, Academic, New York (1971), Chap. 5.

    Google Scholar 

  19. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  ADS  Google Scholar 

  20. C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058 (1970).

    Article  ADS  Google Scholar 

  21. C. A. Angell and R. D. Bressel, J. Phys. Chem. 76, 3244 (1972) (data in microfilm ed.).

    Article  Google Scholar 

  22. C. A. Angell, J. Phys. Chem. 70, 2793 (1966).

    Article  Google Scholar 

  23. C. A. Angell, J. Phys. Chem. 68, 218, 1917 (1964).

    Article  Google Scholar 

  24. C. A. Angell, J. Phys. Chem. 69, 2137 (1965).

    Article  Google Scholar 

  25. D. G. Miller, J. Phys. Chem. 70, 2639 (1966).

    Article  Google Scholar 

  26. E. Williams and C. A. Angell, J. Phys. Chem. 81, 232 (1977).

    Article  Google Scholar 

  27. C. T. Moynihan, R. D. Bressel, and C. A. Angell, J. Chem. Phys. 55, 4414 (1971).

    Article  ADS  Google Scholar 

  28. C. T. Moynihan, J. Phys. Chem. 70, 3399 (1966).

    Article  Google Scholar 

  29. C. A. Angell, L. J. Pollard, and W. Strauss, J. Solut. Chem., 1, 517 (1972).

    Article  Google Scholar 

  30. D. E. Goldsack and R. Franchetto, Can. J. Chem. 55, 1062 (1977).

    Article  Google Scholar 

  31. D. E. Goldsack and R. Franchetto, Can. J. Chem. 56, 1442 (1978).

    Article  Google Scholar 

  32. F. J. Millero, Chem. Rev. 71, 147 (1971).

    Article  Google Scholar 

  33. D. G. Miller, Faraday Discuss. Chem. Soc. 64, 295 (1977).

    Article  Google Scholar 

  34. R. Paterson, Faraday Discuss. Chem. Soc. 64, 304 (1977).

    Article  Google Scholar 

  35. D. G. Miller and M. J. Pikal, J. Solut. Chem. 1, 111 (1972).

    Article  Google Scholar 

  36. M. Spiro, in Physical Methods of Chemistry,Vol. I, Eds. A. Weissberger and B. W. Rossiter, Wiley Interscience, New York (1971), Part IIA, Chap. 4.

    Google Scholar 

  37. M. J. Pikal and D. G. Miller, J. Phys. Chem. 74, 1337 (1970).

    Article  Google Scholar 

  38. A. J. McQuillan, J. Chem. Soc. Faraday Trans. 1 70, 1558 (1974).

    Article  Google Scholar 

  39. A. Agnew and R. Paterson, J. Chem. Soc. Faraday Trans. 1 74, 2896 (1978).

    Article  Google Scholar 

  40. H. G. Hertz, Ber. Bunsenges. 81, 656 (1977).

    Article  Google Scholar 

  41. H. G. Hertz, K. R. Harris, R. Mills, and L. A. Woolf, Ber. Bunsenges. 81, 664 (1977).

    Article  Google Scholar 

  42. (a) H. G. Hertz and R. Mills, J. Phys. Chem. 82, 952 (1978)

    Article  Google Scholar 

  43. H. G. Hertz, private communication (1979).

    Google Scholar 

  44. L. A. Woolf and K. R. Harris, J. Chem. Soc. Faraday Trans. 1 74, 933 (1978).

    Google Scholar 

  45. Landolt-Börnstein, Zahlenwerte und Funktionen,6th ed., Vol. II, Springer, Berlin (1959–1971).

    Google Scholar 

  46. Landolt-Börnstein, Zahlenwerte und Funktionen,6th ed., Vol. II, Springer, Berlin (1969), Part 5a, p. 305.

    Google Scholar 

  47. D. E. Goldsack and A. A. Franchetto, Electrochim. Acta 22, 1287 (1977).

    Article  Google Scholar 

  48. A. N. Campbell and W. G. Paterson, Can. J. Chem. 36, 1004 (1958)

    Article  Google Scholar 

  49. A. N. Campbell and D. F. Williams, Can. J. Chen. 42, 1778, 1984 (1964).

    Article  Google Scholar 

  50. F. A. Gonçalves and J. Kestin, Ber. Bunsenges. 81, 1156 (1977).

    Article  Google Scholar 

  51. G. J. Janz, B. G. Oliver, G. R. Lakshminarayanan, and G. E. Mayer, J. Phys. Chem. 74, 1285 (1970).

    Article  Google Scholar 

  52. E. M. Kartzmark, Can. J. Chem. 50, 2845 (1972).

    Article  Google Scholar 

  53. D. Eagland and G. Pilling, J. Phys. Chem. 76, 1902 (1972) (microfilm ed.).

    Google Scholar 

  54. A. N. Campbell and K. P. Singh, Can. J. Chem. 37, 1959 (1959).

    Article  Google Scholar 

  55. L. A. Woolf and A. W. Hoveling, J. Phys. Chem. 74, 2406 (1970).

    Article  Google Scholar 

  56. V. R. Phillips, J. Chem. Eng. Data 17, 357 (1972).

    Article  Google Scholar 

  57. A. N. Campbell, Can. J. Chem. 54, 3732 (1976).

    Article  Google Scholar 

  58. F. H. Spedding, D. L. Witte, L. E. Shiers, and J. A. Rard, J. Chem. Eng. Data 19, 369 (1974).

    Article  Google Scholar 

  59. F. H. Spedding, L. E. Shiers, and J. A. Rard, J. Chem. Eng. Data 20, 66 (1975).

    Article  Google Scholar 

  60. F. H. Spedding, L. E. Shiers, and J. A. Rard, J. Chem. Eng. Data 20, 88 (1975).

    Article  Google Scholar 

  61. Landolt-Börnstein, Zahlenwerte und Funktionen,6th ed., Vol. II, Springer, Berlin (1960), Part 7II, p. 33.

    Google Scholar 

  62. R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959), Appendix 6. 3.

    Google Scholar 

  63. J. Molenat, J. Chim. Phys. 66, 825 (1969).

    Google Scholar 

  64. M. Postler, Collect. Czech. Chem. Commun. 35, 535 (1970).

    Article  Google Scholar 

  65. D. E. Goldsack, R. Franchetto, and A. A. Franchetto, Can. J. Chem. 54, 2953 (1976).

    Article  Google Scholar 

  66. V. M. Valyashko and A. A. Ivanov, Russ. J. lnorg. Chem. 19, 1628 (1974).

    Google Scholar 

  67. M. Postler, Collect. Czech. Chem. Commun., 35, 2244 (1970).

    Article  Google Scholar 

  68. J. Balej and A. Kitzingerova, Collect. Czech. Chem. Commun., 39, 49 (1974).

    Article  Google Scholar 

  69. S. K. Jalota and R. Paterson, J. Chem. Soc. Faraday Trans. 169, 1510 (1973).

    Google Scholar 

  70. R. H. Stokes, S. Phang, and R. Mills, J. Solut. Chem., 8, 489 (1979).

    Article  Google Scholar 

  71. A. Agnew and R. Paterson, J. Chem. Soc. Faraday Trans. 174, 2885 (1978).

    Google Scholar 

  72. F. H. Spedding, J. A. Rard, and V. W. Saeger, J. Chem. Eng. Data 19, 373 (1974) (microfilm ed.).

    Article  Google Scholar 

  73. J. A. Rard and F. H. Spedding, J. Phys. Chem. 79, 257 (1975) (microfilm ed.).

    Article  Google Scholar 

  74. F. H. Spedding and J. A. Rard, J. Phys. Chem. 78, 1435 (1974) (microfilm ed.).

    Article  Google Scholar 

  75. C. A. Angell, J. Phys. Chem. 70, 3988 (1966).

    Article  Google Scholar 

  76. Landolt-Börnstein, Zahenwerte und Funktioner, 6th ed., Vol. II, Springer, Berlin (1960), Part 71I, p. 237.

    Google Scholar 

  77. E. A. Kaimakov and N. L. Varshayskaya, Russ. Chem. Revs. 35, 89 (1966).

    Article  ADS  Google Scholar 

  78. M. Spiro, in Physical Methods of Chemistry, Vol. 1, Eds. A. Weissberger and B. W. Rossiter, Wiley Interscience, New York (1971), Part IIA, Appendix, Table 4A. 1.

    Google Scholar 

  79. J. W. Augustynski, G. Faita, and T. Mussini, J. Chem. Eng. Data 12, 369 (1967).

    Article  Google Scholar 

  80. T. Mussini and A. Pagella, Chim. Ind. 1Milan) 52, 1187 (1970).

    Google Scholar 

  81. L. J. M. Smits and E. M. Duyvis, J. Phys. Chem. 70, 2747 (1966), and references therein.

    Google Scholar 

  82. S. Lengyel, J. Giber, G. Beke, and A. Vértes, Acta Chim. Acad. Sci. Hung. 39, 357 (1963).

    Google Scholar 

  83. J. Tamâs, O. Kaposi, and P. Scheiber, Acta Chim. Acad. Sci. Hung. 48, 309 (1966).

    Google Scholar 

  84. W. V. Childs and E. S. Amis, J. lnorg. Nucl. Chem. 16, 114 (1960).

    Article  Google Scholar 

  85. M. Fromon, F. Lantelme, and M. Chemla, Bull. Soc. Chini. France, 3388 (1970).

    Google Scholar 

  86. M. J. Pikal and D. G. Miller, J. Chem. Eng. Data 16, 226 (1971).

    Article  Google Scholar 

  87. Landolt-Börnstein, Zahlenwerte und Funktionen, 6th ed., Vol. II, Springer, Berlin (1969), Part 5a, p. 612.

    Google Scholar 

  88. K. Nisancioglu and J. Newman, Am. Inst. Chem. Eng. J. 19, 797 (1973).

    Article  Google Scholar 

  89. P. Turq, F. Lantelme, Y. Roumegous, and M. Chemla, J. Chim. Phys. 68, 527 (1971).

    Google Scholar 

  90. J. Anderson and R. Paterson, J. Chem. Soc. Faraday Trans. 171, 1335 (1975).

    Google Scholar 

  91. A. N. Campbell and B. G. Oliver, Can. J. Chem. 47, 2681 (1969).

    Article  Google Scholar 

  92. K. R. Harris, H. G. Hertz, and R. Mills, J. Chim. Phys. 75, 391 (1978).

    Google Scholar 

  93. H. G. Hertz, M. Holz, and R. Mills, J. Chini. Phys., 71, 1355 (1974).

    Google Scholar 

  94. H. G. Hertz and R. Mills, J. Chim. Phys. 73, 499 (1976).

    Google Scholar 

  95. B. Brun, M. Servent, and J. Salvinien, C. R. Acad. Sci. Ser. C 269, 1 (1969).

    Google Scholar 

  96. J. G. Albright and D. G. Miller, J. Solut. Chem. 4, 809 (1975).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer Science+Business Media New York

About this chapter

Cite this chapter

Spiro, M., King, F. (1981). Transport Properties in Concentrated Aqueous Electrolyte Solutions. In: Inman, D., Lovering, D.G. (eds) Ionic Liquids. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-0920-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-0920-9_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-0922-3

  • Online ISBN: 978-1-4757-0920-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics