Transport Properties in Concentrated Aqueous Electrolyte Solutions

  • M. Spiro
  • F. King

Abstract

Concentrated electrolyte solutions have become fashionable again. That they were unpopular for so long owes much to the advent of the Debye-Hückel-Onsager theory in the 1920s. For several decades thereafter the electrolyte solution spotlight was firmly fixed on the D-H-O model and ever more dilute solutions became the rage. It is true that in the late 19th and early 20th centuries the study of concentrated ionic solutions had been quite respectable but for various reasons much of the data then gathered is now of limited value. A selection of more recent experimental data is presented in Section 3 of this chapter and may serve as a guide to future work. We shall consider here only two-component systems, i.e., one electrolyte plus water. Fortunately the revival of interest in highly concentrated electrolyte solutions has transformed our knowledge not only empirically but also theoretically. A good illustration of the present thriving nature of the field is shown by the fact that one recent year, 1977, saw the appearance of two new theories, one dealing with conductance, transference and diffusion and the other concerned with viscosities. The state of the theoretical scene up to the beginning of 1979 is reviewed in the following section.

Keywords

Concentrate Solution Faraday Trans Molar Conductance Transference Number Alkali Halide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Jones and M. Dole, J. Am. Chem. Soc. 51, 2950 (1929).CrossRefGoogle Scholar
  2. 2.
    R. H. Stokes and R. Mills, Viscosity of Electrolytes and Related Properties, Pergamon, Oxford (1965).Google Scholar
  3. 3.
    J.-C. Justice, J. Solut. Chem., 7, 859 (1978).CrossRefGoogle Scholar
  4. 4.
    B. F. Wishaw and R. H. Stokes, J. Am. Chem. Soc. 76, 2065 (1954).CrossRefGoogle Scholar
  5. 5.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959).Google Scholar
  6. 6.
    R. H. Stokes, in The Structure of Electrolytic Solutions,Ed. W. J. Hamer, Wiley, New York (1959), Chap. 20.Google Scholar
  7. 7.
    J. Salvinien, B. Brun, and J. Molenat, J. Chim. Phys. Suppl., October, 19 (1969).Google Scholar
  8. D. P. Sidebottom and M. Spiro, J. Chem. Soc. Faraday Trans. 1 69 1287 (1973).CrossRefGoogle Scholar
  9. 9.
    L. G. Longsworth, J. Am. Chem. Soc. 54, 2741 (1932).CrossRefGoogle Scholar
  10. 10.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959), Chap. 11, Table 11. 7.Google Scholar
  11. 11.
    R. H. Stokes and R. A. Robinson, J. Am. Chem. Soc. 70, 1870 (1948).CrossRefGoogle Scholar
  12. 12.
    J. Braunstein, in Ionic Interactions: From Dilute Solutions to Fused Salts,Vol. I, Ed. S. Petrucci, Academic, New York (1971), Chap. 4.Google Scholar
  13. 13.
    R. H. Stokes and R. A. Robinson, J. Solut. Chem. 2, 173 (1973).CrossRefGoogle Scholar
  14. 14.
    M. H. Lietzke, R. W. Stoughton, and R. M. Fuoss, Proc. Natl. Acad. Sci. USA 59, 39 (1968).ADSCrossRefGoogle Scholar
  15. 15.
    I. Ruff, J. Chem. Soc. Faraday Trans. II 73, 1858 (1977).CrossRefGoogle Scholar
  16. 16.
    C. A. Angell and K. J. Rao, J. Chem. Phys. 57, 470 (1972).ADSCrossRefGoogle Scholar
  17. 17.
    S. Glasstone, K. J. Laidler, and H. Eyring, The Theory of Rate Processes, McGraw-Hill, New York (1941).Google Scholar
  18. 18.
    C. T. Moynihan, in Ionic Interactions: From Dilute Solutions to Fused Salts, Vol. 1, Ed. S. Petrucci, Academic, New York (1971), Chap. 5.Google Scholar
  19. 19.
    G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).ADSCrossRefGoogle Scholar
  20. 20.
    C. A. Angell and E. J. Sare, J. Chem. Phys. 52, 1058 (1970).ADSCrossRefGoogle Scholar
  21. 21.
    C. A. Angell and R. D. Bressel, J. Phys. Chem. 76, 3244 (1972) (data in microfilm ed.).CrossRefGoogle Scholar
  22. 22.
    C. A. Angell, J. Phys. Chem. 70, 2793 (1966).CrossRefGoogle Scholar
  23. 23.
    C. A. Angell, J. Phys. Chem. 68, 218, 1917 (1964).CrossRefGoogle Scholar
  24. 24.
    C. A. Angell, J. Phys. Chem. 69, 2137 (1965).CrossRefGoogle Scholar
  25. 25.
    D. G. Miller, J. Phys. Chem. 70, 2639 (1966).CrossRefGoogle Scholar
  26. 26.
    E. Williams and C. A. Angell, J. Phys. Chem. 81, 232 (1977).CrossRefGoogle Scholar
  27. 27.
    C. T. Moynihan, R. D. Bressel, and C. A. Angell, J. Chem. Phys. 55, 4414 (1971).ADSCrossRefGoogle Scholar
  28. 28.
    C. T. Moynihan, J. Phys. Chem. 70, 3399 (1966).CrossRefGoogle Scholar
  29. 29.
    C. A. Angell, L. J. Pollard, and W. Strauss, J. Solut. Chem., 1, 517 (1972).CrossRefGoogle Scholar
  30. 30.
    D. E. Goldsack and R. Franchetto, Can. J. Chem. 55, 1062 (1977).CrossRefGoogle Scholar
  31. 31.
    D. E. Goldsack and R. Franchetto, Can. J. Chem. 56, 1442 (1978).CrossRefGoogle Scholar
  32. 32.
    F. J. Millero, Chem. Rev. 71, 147 (1971).CrossRefGoogle Scholar
  33. 33.
    D. G. Miller, Faraday Discuss. Chem. Soc. 64, 295 (1977).CrossRefGoogle Scholar
  34. 34.
    R. Paterson, Faraday Discuss. Chem. Soc. 64, 304 (1977).CrossRefGoogle Scholar
  35. 35.
    D. G. Miller and M. J. Pikal, J. Solut. Chem. 1, 111 (1972).CrossRefGoogle Scholar
  36. 36.
    M. Spiro, in Physical Methods of Chemistry,Vol. I, Eds. A. Weissberger and B. W. Rossiter, Wiley Interscience, New York (1971), Part IIA, Chap. 4.Google Scholar
  37. 37.
    M. J. Pikal and D. G. Miller, J. Phys. Chem. 74, 1337 (1970).CrossRefGoogle Scholar
  38. A. J. McQuillan, J. Chem. Soc. Faraday Trans. 1 70, 1558 (1974).CrossRefGoogle Scholar
  39. A. Agnew and R. Paterson, J. Chem. Soc. Faraday Trans. 1 74, 2896 (1978).CrossRefGoogle Scholar
  40. 40.
    H. G. Hertz, Ber. Bunsenges. 81, 656 (1977).CrossRefGoogle Scholar
  41. 41.
    H. G. Hertz, K. R. Harris, R. Mills, and L. A. Woolf, Ber. Bunsenges. 81, 664 (1977).CrossRefGoogle Scholar
  42. 42.
    (a) H. G. Hertz and R. Mills, J. Phys. Chem. 82, 952 (1978)CrossRefGoogle Scholar
  43. (b).
    H. G. Hertz, private communication (1979).Google Scholar
  44. 43.
    L. A. Woolf and K. R. Harris, J. Chem. Soc. Faraday Trans. 1 74, 933 (1978).Google Scholar
  45. 44.
    Landolt-Börnstein, Zahlenwerte und Funktionen,6th ed., Vol. II, Springer, Berlin (1959–1971).Google Scholar
  46. 45.
    Landolt-Börnstein, Zahlenwerte und Funktionen,6th ed., Vol. II, Springer, Berlin (1969), Part 5a, p. 305.Google Scholar
  47. 46.
    D. E. Goldsack and A. A. Franchetto, Electrochim. Acta 22, 1287 (1977).CrossRefGoogle Scholar
  48. 47.
    A. N. Campbell and W. G. Paterson, Can. J. Chem. 36, 1004 (1958)CrossRefGoogle Scholar
  49. A. N. Campbell and D. F. Williams, Can. J. Chen. 42, 1778, 1984 (1964).CrossRefGoogle Scholar
  50. 48.
    F. A. Gonçalves and J. Kestin, Ber. Bunsenges. 81, 1156 (1977).CrossRefGoogle Scholar
  51. 49.
    G. J. Janz, B. G. Oliver, G. R. Lakshminarayanan, and G. E. Mayer, J. Phys. Chem. 74, 1285 (1970).CrossRefGoogle Scholar
  52. 50.
    E. M. Kartzmark, Can. J. Chem. 50, 2845 (1972).CrossRefGoogle Scholar
  53. 51.
    D. Eagland and G. Pilling, J. Phys. Chem. 76, 1902 (1972) (microfilm ed.).Google Scholar
  54. 52.
    A. N. Campbell and K. P. Singh, Can. J. Chem. 37, 1959 (1959).CrossRefGoogle Scholar
  55. 53.
    L. A. Woolf and A. W. Hoveling, J. Phys. Chem. 74, 2406 (1970).CrossRefGoogle Scholar
  56. 54.
    V. R. Phillips, J. Chem. Eng. Data 17, 357 (1972).CrossRefGoogle Scholar
  57. 55.
    A. N. Campbell, Can. J. Chem. 54, 3732 (1976).CrossRefGoogle Scholar
  58. 56.
    F. H. Spedding, D. L. Witte, L. E. Shiers, and J. A. Rard, J. Chem. Eng. Data 19, 369 (1974).CrossRefGoogle Scholar
  59. 57.
    F. H. Spedding, L. E. Shiers, and J. A. Rard, J. Chem. Eng. Data 20, 66 (1975).CrossRefGoogle Scholar
  60. 58.
    F. H. Spedding, L. E. Shiers, and J. A. Rard, J. Chem. Eng. Data 20, 88 (1975).CrossRefGoogle Scholar
  61. 59.
    Landolt-Börnstein, Zahlenwerte und Funktionen,6th ed., Vol. II, Springer, Berlin (1960), Part 7II, p. 33.Google Scholar
  62. 60.
    R. A. Robinson and R. H. Stokes, Electrolyte Solutions, 2nd ed., Butterworths, London (1959), Appendix 6. 3.Google Scholar
  63. 61.
    J. Molenat, J. Chim. Phys. 66, 825 (1969).Google Scholar
  64. 62.
    M. Postler, Collect. Czech. Chem. Commun. 35, 535 (1970).CrossRefGoogle Scholar
  65. 63.
    D. E. Goldsack, R. Franchetto, and A. A. Franchetto, Can. J. Chem. 54, 2953 (1976).CrossRefGoogle Scholar
  66. 64.
    V. M. Valyashko and A. A. Ivanov, Russ. J. lnorg. Chem. 19, 1628 (1974).Google Scholar
  67. 65.
    M. Postler, Collect. Czech. Chem. Commun., 35, 2244 (1970).CrossRefGoogle Scholar
  68. 66.
    J. Balej and A. Kitzingerova, Collect. Czech. Chem. Commun., 39, 49 (1974).CrossRefGoogle Scholar
  69. 67.
    S. K. Jalota and R. Paterson, J. Chem. Soc. Faraday Trans. 169, 1510 (1973).Google Scholar
  70. 68.
    R. H. Stokes, S. Phang, and R. Mills, J. Solut. Chem., 8, 489 (1979).CrossRefGoogle Scholar
  71. 69.
    A. Agnew and R. Paterson, J. Chem. Soc. Faraday Trans. 174, 2885 (1978).Google Scholar
  72. 70.
    F. H. Spedding, J. A. Rard, and V. W. Saeger, J. Chem. Eng. Data 19, 373 (1974) (microfilm ed.).CrossRefGoogle Scholar
  73. 71.
    J. A. Rard and F. H. Spedding, J. Phys. Chem. 79, 257 (1975) (microfilm ed.).CrossRefGoogle Scholar
  74. 72.
    F. H. Spedding and J. A. Rard, J. Phys. Chem. 78, 1435 (1974) (microfilm ed.).CrossRefGoogle Scholar
  75. 73.
    C. A. Angell, J. Phys. Chem. 70, 3988 (1966).CrossRefGoogle Scholar
  76. 74.
    Landolt-Börnstein, Zahenwerte und Funktioner, 6th ed., Vol. II, Springer, Berlin (1960), Part 71I, p. 237.Google Scholar
  77. 75.
    E. A. Kaimakov and N. L. Varshayskaya, Russ. Chem. Revs. 35, 89 (1966).ADSCrossRefGoogle Scholar
  78. 76.
    M. Spiro, in Physical Methods of Chemistry, Vol. 1, Eds. A. Weissberger and B. W. Rossiter, Wiley Interscience, New York (1971), Part IIA, Appendix, Table 4A. 1.Google Scholar
  79. 77.
    J. W. Augustynski, G. Faita, and T. Mussini, J. Chem. Eng. Data 12, 369 (1967).CrossRefGoogle Scholar
  80. 78.
    T. Mussini and A. Pagella, Chim. Ind. 1Milan) 52, 1187 (1970).Google Scholar
  81. 79.
    L. J. M. Smits and E. M. Duyvis, J. Phys. Chem. 70, 2747 (1966), and references therein.Google Scholar
  82. 80.
    S. Lengyel, J. Giber, G. Beke, and A. Vértes, Acta Chim. Acad. Sci. Hung. 39, 357 (1963).Google Scholar
  83. 81.
    J. Tamâs, O. Kaposi, and P. Scheiber, Acta Chim. Acad. Sci. Hung. 48, 309 (1966).Google Scholar
  84. 82.
    W. V. Childs and E. S. Amis, J. lnorg. Nucl. Chem. 16, 114 (1960).CrossRefGoogle Scholar
  85. 83.
    M. Fromon, F. Lantelme, and M. Chemla, Bull. Soc. Chini. France, 3388 (1970).Google Scholar
  86. 84.
    M. J. Pikal and D. G. Miller, J. Chem. Eng. Data 16, 226 (1971).CrossRefGoogle Scholar
  87. 85.
    Landolt-Börnstein, Zahlenwerte und Funktionen, 6th ed., Vol. II, Springer, Berlin (1969), Part 5a, p. 612.Google Scholar
  88. 86.
    K. Nisancioglu and J. Newman, Am. Inst. Chem. Eng. J. 19, 797 (1973).CrossRefGoogle Scholar
  89. 87.
    P. Turq, F. Lantelme, Y. Roumegous, and M. Chemla, J. Chim. Phys. 68, 527 (1971).Google Scholar
  90. 88.
    J. Anderson and R. Paterson, J. Chem. Soc. Faraday Trans. 171, 1335 (1975).Google Scholar
  91. 89.
    A. N. Campbell and B. G. Oliver, Can. J. Chem. 47, 2681 (1969).CrossRefGoogle Scholar
  92. 90.
    K. R. Harris, H. G. Hertz, and R. Mills, J. Chim. Phys. 75, 391 (1978).Google Scholar
  93. 91.
    H. G. Hertz, M. Holz, and R. Mills, J. Chini. Phys., 71, 1355 (1974).Google Scholar
  94. 92.
    H. G. Hertz and R. Mills, J. Chim. Phys. 73, 499 (1976).Google Scholar
  95. 93.
    B. Brun, M. Servent, and J. Salvinien, C. R. Acad. Sci. Ser. C 269, 1 (1969).Google Scholar
  96. 94.
    J. G. Albright and D. G. Miller, J. Solut. Chem. 4, 809 (1975).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1981

Authors and Affiliations

  • M. Spiro
    • 1
  • F. King
    • 1
  1. 1.Department of ChemistryImperial College of Science and TechnologyLondonEngland

Personalised recommendations